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SUMMARY

The wide applicability of Gibbs sampling has increased the use of more complex and multi-level
hierarchical models. To use these models entails dealing with hyperparameters in the deeper levels of a
hierarchy. There are three typical methods for dealing with these hyperparameters: specify them, estimate
them, or use a ‘flat’ prior. Each of these strategies has its own associated problems. In this paper, using
an empirical Bayes approach, we show how the hyperparameters can be estimated in a way that is both
computationally feasible and statistically valid.
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1. INTRODUCTION

Computation using the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990) has made
Bayesian estimation in complex hierarchical models not only feasible, but almost routine. A consequence
of this development is that, to do a Bayesian analysis, an experimenter may be asked to specify values for
hyperparameters that are in deep levels of a hierarchy. A difficulty arises here in that such values may be
difficult to specify, defying not only intuition, but any obvious connection to the problem at hand.

One consequence of this difficulty with hyperparameters is that they tend to be ignored. There is
some basis for this, as there is a certain ‘robustness’ to specification of parameters that lie deeper in a
hierarchy (Goel and DeGroot, 1981). However, there is not a universal robustness and, especially if the
hyperparameter is estimated, it could be important to assess the actual sensitivity of the inference to the
specification of the hyperparameter.

For example, we look at data analysed by Efron (1996), a meta-analysis of randomized trials of a new
surgical treatment for stomach ulcers. The data, given in Appendix A.4, are paired binomial experiments
in 39 medical centers. (Efron (1996) presents data for 41 medical centers, but drops the last two in his
analysis. For consistency we also eliminate those cases (but see Morris, 1996, for another opinion). We
also have flipped Efron’s definition of ‘success’ so that here a ‘success’ is a desirable outcome.) In medical
center (experiment) j, j = 1, 2, . . . , 39 we observe

Y1 j ∼ binomial(n1 j , p1 j ) and Y2 j ∼ binomial(n2 j , p2 j ),

where Y1 j are the successes from the treatment, and Y2 j are the successes from the control. As we might
expect there to be a relationship between p1 j and p2 j for each j , we could model this in a hierarchical
model using a bivariate distribution with a correlation between p1 j and p2 j . The standard bivariate
Dirichlet distribution is an obvious candidate, but it has the property that the variables must be negatively
correlated. In terms of this example, this would force a negative correlation between success rates within
a medical center, which does not seem reasonable. With a slight redefinition, however, we can have a form

c© Oxford University Press (2001)



486 G. CASELLA

of the bivariate Dirichlet in which correlation between p1 j and p2 j is non-negative. (Appendix A.2 gives
more details on this and alternative priors.) This leads to the hierarchical model

Y1 j ∼ binomial(n1 j , p1 j ) and Y2 j ∼ binomial(n2 j , p2 j ), j = 1, 2, . . . , 39

π(p1 j , p2 j ) ∝ (1 − p1 j )
a−1 pb−1

2 j (p1 j − p2 j )
c−1 (1)

where a, b, and c are hyperparameters.
To carry out an analysis of this model, it is necessary to specify values for the hyperparameters a,

b, and c. Although these parameters can be given meaning in terms of means and variances of the prior
distribution (see Appendix A.2), deciding on specific values could be difficult. Moreover, if the values
were specified, it would be wise to then somehow assess the sensitivity of the answer. We propose to
estimate these parameters and then do the Bayesian analysis, and demonstrate that this methodology is a
valid one.

Estimation of hyperparameters seems common, especially in Gibbs sampling implementations, but is
not often accompanied with an assessment of the effect of the estimation. For the ulcer data, Figure 1
shows the results of the analysis that we propose. The posterior distribution is calculated using estimated
values of the hyperparameters. Along with this posterior density, we also display an envelope of densities
corresponding to the values of the hyperparameters that fall within one standard deviation of the estimated
values. This range of hyperparameter values is constructed using likelihood methods, and we can actually
construct valid (asymptotically) confidence sets with respect to the marginal distribution of the data.
Moreover, a display similar to this can be constructed for various ranges of the hyperparameters, which
could give a good idea of the effect of the value of the hyperparameters on the resulting posterior density,
and thus identify the importance of the hyperparameter in the overall inference. Details are given in
Section 4.

The actual model that we are fitting is, in fact, an empirical Bayes model in the spirit of Morris (1983)
and Efron (1996). Moreover, the EM/Gibbs algorithm that we describe in Section 3 can be adapted to
the set-up of Efron (1996). To overcome some of the difficulty in calculating marginal MLEs, Efron
considered models based on the exponential family. Using the EM/Gibbs algorithm, the applicability of
Efron’s models can be expanded. Moreover, in contrast to the comments of Gelfand (1996), with our new
algorithm it may be the case that the empirical Bayes model is now easier to fit than a hierarchical model.
We discuss this point further in Section 5.

A common implementation of the hierarchy (1) is to estimate some subset of a, b, and c (and specify
the remaining ones), and calculate π(pi |y, â, b̂, ĉ) from the Gibbs sampler. Strictly speaking, this is not
a Bayesian analysis, as the posterior distribution will depend on estimated hyperparameters. In fact, this
is a ‘classical empirical Bayes’ case (see, for example, Morris, 1983) where we need to account for the
variation due to the estimated hyperparameters. We proceed as follows. Conditional on the values of the
hyperparameters, we are content to use a Bayesian posterior distribution. However, at the hyperparameter
level, we will use maximum likelihood theory to estimate the parameters and assess the errors, and then
use these estimates to understand how precise our estimated posterior distribution is. We are thus using
a frequentist error calculation to assess the accuracy of a Bayesian inference, which is in the spirit of a
robust Bayes analysis. Our main concern is with the properties of such an estimated procedure.

Bayesian inference based on data-dependent priors is not new, and can be traced back to, at least,
Berger (1984), although one could argue that the nonparametric empirical Bayes formulation of Robbins
(1964, 1983) is also a case of this. (However, Robbins was not directly concerned with a Bayesian
inference, rather with a minimax property.) In addition to the previously mentioned parametric empirical
Bayes formulation of Morris (1983) (see also Carlin and Louis, 1996), other recent uses of data-dependent
priors include O’Hagan (1995) and Berger and Perrichi (1996). Shively et al. (1999) use data-dependent
priors in a way similar to ours, but do not go into detail on assessment of the effect of hyperparameter
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Fig. 1. Posterior density of the logodds of treatment versus control. The top panel is study 8 and the bottom panel
is study 21. The envelope around the posterior consists of posterior densities with hyperparameter values within one
standard deviation of the estimated hyperparameters. Note that the envelope is tighter for study 21, which had more
observations than study 8.

error. Wasserman (2000), working in mixture models, shows that data-dependent priors can yield second-
order-correct frequentist confidence intervals.

The remainder of the paper is organized as follows. In Section 2 we develop the empirical Bayes Gibbs
sampler, look at some theoretical properties of the estimated posterior distribution, and give a convergence
result (with the proof in Appendix A.1). Section 3 goes into detail on the implementation of the algorithm.
Here we show that with very little overhead, the entire empirical Bayes Gibbs sampler can be implemented
using little more than the calculations of the original Gibbs sampler. In Section 4 we apply the empirical
Bayes Gibbs sampler to the data described in the introduction. Section 5 contains a discussion.

2. THE EMPIRICAL BAYES GIBBS SAMPLER

The Gibbs sampler has found many of its applications in hierarchical models. We begin by defining
a ‘generic hierarchy’, from which we develop the Gibbs sampler and its empirical Bayes version. Let X
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have sampling distribution f (x |θ, ψ), where θ is a parameter of interest and ψ is a nuisance parameter.
We observe p independent copies of X , each with its own parameter θ . We then model the θi with a
common prior distribution, whose parameters may, in turn, have a prior distribution. This all results in
what has come to be known as a conditionally independent hierarchical model (Kass and Steffey, 1989):

Xi ∼ f (x |θi , ψ) i = 1, 2, . . . , p

θi ∼ π(θ |λ, ψ) (2)

λ ∼ g(λ|ψ).

Although we model λ as a common parameter (the simple empirical Bayes case), neither λ nor ψ need be
scalars.

In a typical application of the Gibbs sampler we specify ψ and, based on observations
x = (x1, . . . , x p), we would set up iterations between the full conditional posterior distributions

θ( j+1) ∼ π(θ |x, ψ, λ( j)) (3)

λ( j+1) ∼ g(λ|x, ψ, θ( j+1))

for j = 1, . . . , M , to produce estimates of the marginal posteriors

π(θ |x, ψ) and g(λ|x, ψ).

If the experimenter is unable, or unwilling, to specify ψ , an alternative is to first estimate ψ with ψ̂ and
run the empirical Bayes Gibbs sampler iterations

θ ∼ π(θ |x, ψ̂, λ)

λ ∼ g(λ|x, ψ̂, θ).

The Gibbs sampler works as usual—that is, as in (3)—and, for example, produces the estimated
posterior distribution

π̂(θ |x, ψ̂) = 1

M

M∑
j=1

π(θ |x, ψ̂, λ( j)). (4)

Our fundamental concern is to understand in what sense we can consider π̂(θ |x, ψ̂) to be an estimate of
π(θ |x, ψ).

The classic results on consistency of Bayes estimators date back to Doob (1949), and are given a
rigorous treatment by Schwartz (1965) and Diaconis and Freedman (1986); see also Schervisch (1995,
Section 7.4.1). The basic theme of these results is that as the amount of data increases without bound, the
posterior distribution tends to a point mass at the true value of θ . In the situation that we are considering,
these results are not exactly what we want, as our situation is closer to an empirical Bayes model. The
results of Datta (1991) are more in the spirit of the present model, but again are not exactly applicable.
However, the structure that we assume, especially the underlying likelihood estimation, allows a fairly
straightforward development of the needed theory.

Starting from the generic hierarchy (2), the posterior distributions of interest are π(θi |x, ψ), for
i = 1, . . . , p. The Gibbs sampler estimates these densities with the average of the conditional densities
as long as these latter densities are known in closed form. With an estimated hyperparameter ψ̂ , the MLE
of ψ under the marginal distribution m(x|ψ), the development in Appendix A.1 gives conditions under
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which, for any measurable set A, we have for each i = 1, 2, . . . , p,

∫
A

∣∣∣∣∣
1

M

M∑
j=1

π(θi |x, ψ̂, λ( j)) − π(θi |x, ψ)

∣∣∣∣∣ dθi → 0, (5)

as M, p → ∞.

3. IMPLEMENTATION

The results of the previous section give us some assurance that the inferences we draw from the
estimated posterior will be reasonable. Since we are using maximum likelihood methods to estimate
ψ , and we are basing our inferences on the marginal distribution of X1, . . . , X p, we have available the
‘machinery’ of likelihood to help us make these inferences. However, before getting to this point, we first
address a point that, in practice, could be a problem.

To use a marginal MLE to estimate the hyperparameter ψ requires computation of the marginal
likelihood function, which could require a high-dimensional integration. (For example, a reasonable
hierarchical model for the famous salamander data of McCullagh and Nelder (1989) can result in the
need to evaluate six intractable 20-dimensional integrals to evaluate the likelihood function: see Karim
and Zeger (1992) and Hobert (2000).) Moreover, we note that one of the strengths of the Gibbs sampler is
that it avoids having to use high-dimensional integration to compute marginals, so it is counterproductive
to re-introduce such a calculation. Fortunately, for the structure induced by the Gibbs sampler, and for
calculation of a marginal MLE, there is an EM algorithm that is virtually automatic to implement.

For the generic hierarchy (2), notice that the marginal likelihood for ψ can be written as

L(ψ |x) = L(ψ |x, θ, λ)

π(θ, λ|x, ψ)
(6)

where L(ψ |x, θ, λ) is the conditional likelihood of ψ and π(θ, λ|x, ψ) is the posterior distribution of
(θ, λ) given ψ . By taking logs, this expression for L(ψ |x) leads to the identity

E[log L(ψ |x)|ψ0] = E[log L(ψ |x, θ, λ)|ψ0] − E[log π(θ, λ|x, ψ)|ψ0] (7)

where the expectation is taken with respect to π(θ, λ|x, ψ0). Equation (7) is the basic identity on which
the EM algorithm is built, and the sequence

ψ(k+1) = argmaxψ E[log L(ψ |x, θ, λ)|ψ(k)]
converges to the MLE of ψ . Rather than actually computing this expectation, we will instead use the
Monte Carlo version of the EM algorithm, which has iterations

ψ(k+1) = argmaxψ

1

M

M∑
j=1

log L(ψ |x, θ( j), λ( j)). (8)

As noted, calculation of the conditional likelihood on the right side is straightforward. However, what
makes this EM algorithm automatic is that the expectation is taken with respect to the distribution
π(θ, λ|x, ψ(k)), which is exactly the output from the original Gibbs sampler. That is, if we specify that
ψ = ψ(k), the original Gibbs sampler produces a sample from the distribution that we want. So we have
the following algorithm to produce the empirical Bayes Gibbs sampler posterior estimate.

ALGORITHM For the generic hierarchy (2)
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1. Set k = 0 and initialize ψ(0).
2. Generate a sample (θ( j), λ( j)), j = 1, . . . , M from the Gibbs sampler which iterates between

π(θ|x, λ, ψ(k)) and π(λ|x, θ, ψ(k)).
3. Update ψ(k) with the Monte Carlo EM iteration (8) and return to 2.
4. At convergence of ψ(k) to the marginal MLE ψ̂ , produce a final Gibbs sample from π(θ|x, λ, ψ̂)

and π(λ|x, θ, ψ̂).

The final Gibbs sample can then be used to construct posterior estimates such as (4). We can,
therefore, produce the empirical Bayes Gibbs sample merely by looping on the original Gibbs sampler,
and no integrations are required for calculation of the marginal likelihood estimates. The only additional
computation is the maximization in the EM algorithm.

4. PRACTICE

To illustrate the use of the algorithm of Section 3, we look at the ulcer data of Section 1. Based on the
hierarchical model (1), we implement the Gibbs sampler using the full conditional posteriors

π(p1 j |p2 j ) ∝ p
y1 j
1 j (1 − p1 j )

n1 j −y1 j +a−1 pb−1
2 j (p1 j − p2 j )

c−1

π(p2 j |p1 j ) ∝ p
y1 j +b−1
2 j (1 − p2 j )

n2 j −y2 j (p1 j − p2 j )
c−1 (9)

j = 1, 2, . . . , 39.

To simplify the model for the hyperparameters, we assume that a = b, so we only fit two hyperparam-
eters. With this parametrization, we find that increasing the hyperparameter a will increase our estimate of
the underlying success probabilities, while increasing c will decrease the underlying correlation. Looking
at the moment formulae in Appendix A.2 will make this clear.

The output from the Gibbs sampler and the EM algorithm are samples of pairs (p1 j , p2 j ), j =
1, 2, . . . , 39 from the joint posterior distribution. For this hierarchy we can also write down the form
of the joint posterior. Thus, to display the results of the analysis we have a number of choices—we can
display joint or marginal posterior distributions.

Another possibility is to display a transformation of the posterior distribution. Since we are interested
in comparing p1 j to p2 j , we have chosen to transform the bivariate posterior to display the logodds.
This entails a bivariate transformation and a marginalization. Although the bivariate transformation is
tedious, it can be done analytically. (We have done it using Mathematica (Wolfram, 1998).) However,
the marginalization is not a tractable integral, and it must be accomplished using a Monte Carlo
marginalization. Thus (suppressing j), for t = log(

p1
1−p1/

p2
1−p2 ) the final posterior that we display is

π(t |y, â, ĉ) =
∫

π(t, p2|y, â, ĉ) dp2

≈ 1

M

M∑
i=1

π(t, p(i)
2 |y, â, ĉ)

π(t (i), p(i)
2 |y, â, ĉ)

w(t (i))

where (t (i), p(i)
2 ), i = 1, 2, . . . , M are the output from the Gibbs sampler and w(·) is an arbitrary density

on (0, ∞). (See Appendix A.2 for details.)
Figure 1 shows the posterior distributions of the logodds from two different studies along with an

envelope of densities corresponding to the values of the hyperparameters that fall within one standard
deviation of the estimated values. The envelope gives some idea of the sensitivity of the posterior to the
estimated values of the hyperparameters, and, in particular, gives an idea of how sensitive are the endpoints
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of a confidence interval. Study 8 has fewer observations than Study 21, which results in a tighter envelope
for the latter study.

To calculate the standard errors, we have implemented an identity due to Oakes (1999). The identity
as presented by Oakes is more suitable to regular EM rather than Monte Carlo EM, but with a little
modification it becomes easily implementable for Monte Carlo EM. See Appendix A.3 for details.

It should be mentioned that the model we are considering is rather simplistic, as we would expect to
use covariates to further model the success probabilities. For example, the success probabilities should
certainly be a function of both patient and medical center covariates. The methodology that we describe
here can be adapted to these more complicated models.

5. DISCUSSION

We have described a combination of Bayesian and frequentist methodologies, together with some
Monte Carlo computing algorithms. Naturally, there are concerns, with perhaps the most important ones
relating to the validity of the statistical inference. In this final section we address a variety of issues.

5.1 Inference

The methodology discussed here, which is empirical Bayes in nature, leads naturally to an inference that
is a combination of Bayesian and frequentist inference. For example, Figure 1 can be seen as a Bayesian
posterior density with a frequentist confidence set around it. Although some might find this unsettling,
it merely reflects the inference that can be done. That is, for the parameters that can be modeled with a
prior distribution, a posterior distribution is calculated. For those parameters without a prior distribution,
frequentist inference (through likelihood) becomes the only option. One resulting inference is a range of
Bayes posterior distributions, where the range reflects the frequentist uncertainty in the hyperparameter.

Such an inference is in the spirit of a robust Bayes analysis (Berger, 1990, 1994; Wasserman, 1990),
but is really fundamentally different. One goal of robust Bayes analysis is to find a class of priors for which
the resulting inference is ‘robust’ in that it does not quantitatively change as the prior varies through the
class. This is not our goal. Rather, we use the data to estimate the prior, within a class, that provides the
best fit (in the sense of maximum likelihood). Then, rather than assessing the robustness of the inference
to the class of priors, we present a diagnostic for assessing the robustness of the inference over a range of
likely values of the estimated parameter.

With a generic hierarchy such as (2), the deepest point in the hierarchy is the point where the inference
shifts from Bayesian to frequentist. That is, as we go down the hierarchy, every parameter has a prior until
we get to ψ . So the inference on ψ is frequentist. The method and algorithm of Section 3 details the
EM/Gibbs sampler that results in consistent estimates of posterior distributions and asymptotically valid
confidence sets.

From a graph such as Figure 1, one can also attach a Bayesian inference to the envelope of densities.
For example, for a fixed value of ψ , we can construct a credible region for θ , Cψ . If we choose Cψ so that
P(θ ∈ Cψ |ψ, x) = 1 − γ1, and ψ varies in a set S, a Bayesian inference from this setup is

P(θ ∈ Cψ, ψ ∈ S|x) =
∫

S
P(θ ∈ Cψ |ψ, x)π(ψ |x) dψ = (1 − γ1)P(ψ ∈ S|x),

where π(ψ |x) is the posterior distribution of ψ . Moreover, we could assume that there is some ‘probability
matching’ prior for ψ . That is, there is a prior distribution for which the Bayesian and frequentist coverage
probabilities agree to some high order (see, for example, Datta and Ghosh (1995) or the review paper of
Kass and Wasserman (1996)). If we construct an approximate 1 − γ2 confidence set for ψ using this
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methodology, we then have the approximation

P(θ ∈ Cψ, ψ ∈ S|x) ≈ (1 − γ1)(1 − γ2).

Alternatively, one can use Laplace approximations (Tierney and Kadane, 1986) to obtain approximations
to these probabilities.

5.2 Computation

The actual implementation of the methodology, and the inference, is almost automatic, and uses only the
standard tools of the Gibbs sampler. Let us first note that although we have used examples in which the
Gibbs sampler was a bivariate sampler, nothing precludes the method from being using on a more complex
Gibbs structure.

There are a number of ways in which the computations described here can be improved, some of
which are rather easy. For example, to implement the Monte Carlo EM algorithm of Section 3, there is
no need to re-run the Gibbs sampler at each update of the EM sequence. This is because the Monte Carlo
expected log likelihood can be recalculated using importance sampling, a point that is noted by Booth
and Hobert (1999). To see this, recall the Monte Carlo EM iteration (8). In the calculation of the average
log likelihood at the kth step of the sequence, we generated a sample (θ

( j)
k , λ

( j)
k ), j = 1, . . . , M from

π(θ, λ|x, ψ(k)). (Here we use a subscript k for the EM iteration.) If instead of having a sample for this
distribution, suppose that we continually reuse the first generated sample (θ

( j)
0 , λ

( j)
0 ), j = 1, . . . , M from

π(θ, λ|x, ψ(0)). We then have the importance sampling approximation

1

M

M∑
j=1

log L(ψ |x, θ
( j)
k , λ

( j)
k ) ≈ 1

M

M∑
j=1

log L(ψ |x, θ
( j)
0 , λ

( j)
0 )

π(θ
( j)
0 , λ

( j)
0 |x, ψ(k))

π(θ
( j)
0 , λ

( j)
0 |x, ψ(0))

. (10)

One difficulty remains in using (10), in that in the Gibbs sampler we do not know the form of π(θ, λ|x, ψ).
However, from (6), we see that π(θ, λ|x, ψ) = L(ψ |x, θ, λ)/L(ψ |x), where L(ψ |x, θ, λ) is merely the
product of the original densities in the hierarchy. But most importantly, L(ψ |x) plays no role in the
maximization of (10) as it only depends of the parameters ψ(0) and ψ(k). Hence in the maximization of
the EM sequence we use

argmaxψ

1

M

M∑
j=1

log L(ψ |x, θ
( j)
k , λ

( j)
k ) ≈ argmaxψ

1

M

M∑
j=1

log L(ψ |x, θ
( j)
0 , λ

( j)
0 )

L(ψ(k)|x, θ
( j)
0 , λ

( j)
0 )

L(ψ(0)|x, θ
( j)
0 , λ

( j)
0 )

.

(11)

This strategy can be refined to use periodic updates of the (θ, λ) sample, which should improve the
approximation in (11).

A further computing refinement is possible using methodology developed in Levine and Casella
(2001), which builds on the work of Booth and Hobert (1999). Booth and Hobert describe an algorithm
to help choose the size of the Monte Carlo sample used at each step of the EM algorithm, but need
independent samples for their algorithm. Using regeneration ideas developed by Robert et al. (1998),
Levine and Casella extended the algorithm to dependent samples, making it implementable for MCMC
samplers.

5.3 Alternatives

There are different approaches to modeling and analysing data such as the ulcer data, and some may
not agree with the approach taken here. One reviewer felt that the ulcer data is better analysed by
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parametrizing it directly in terms of the logodds, and either fitting a fixed trial effect and a random
treatment effect, or a full bivariate distribution on control and treatment response logodds. These are
worthy alternatives, and in either case the EM/Gibbs algorithm can be used to fit the models.

Another alternative to the model considered here is the full Bayesian hierarchical model. In cases
where all priors can be specified, this is the preferred model to use. Thus, the methodology presented here
is in no way a ‘competitor’ to the full hierarchical set-up, but rather an option when the full hierarchy
cannot be specified. In such cases, rather than using arbitrary ‘flat’ priors, one may consider estimation of
the hyperparameters and the empirical Bayes solution.

When there are ‘flat’ or other ‘noninformative’ priors on the hyperparameter, the hierarchical Bayes
approach can also, in many instances, provide a good alternative. However, some care must be taken in
these situations as there are times when the implementation of a ‘flat’ prior can be problematic, and
can lead (possibly without detection) to models with improper posterior distributions (Natarajan and
McCulloch, 1995; Hobert and Casella, 1996). For example, in the generic hierarchy (2), we can adopt
the approach of George et al. (1993, 1994). Starting from the conditional likelihood L(ψ |x, θ, λ) =
f (x|θ, ψ)π(θ|λ, ψ)g(λ|ψ), normalize L as L∗ = ∫

L dψ . Then use the Gibbs sampler

θ( j+1) ∼ π(θ|x, ψ( j), λ( j))

λ( j+1) ∼ g(λ|x, ψ( j), θ( j+1)) (12)

ψ( j+1) ∼ L∗(ψ |x, θ( j+1), λ( j+1))

to produce the marginal posterior densities π(θ|x) and g(λ|x).
There are a number of complications with this approach that make it less appealing than the EM/Gibbs

approach. Firstly, L∗ = ∫
L dψ may not be finite. (This can, of course, be fixed by instead calculating∫

Lh(ψ) dψ for some prior h, and then we are back in the fully specified proper hierarchical model.)
Secondly, generation of samples in (12) can be quite difficult, even if a prior h is used. Thirdly, the
consistency results of Section 2 may not apply here, so the frequentist interpretation is less clear.
(Choosing h to be a ‘probability matching’ prior, as Efron (1996) suggests, could alleviate this, but the
computational difficulties still remain.)

Various other refinements remain to be explored for this methodology. Other than applying these
methods to other MCMC schemes, two interesting paths are (i) exploring the effect of other estimates of
the hyperparameters, especially robust estimates, and (ii) exploring the effect of optimizing (or in some
way varying) the shape of the hyperparameter confidence set.
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APPENDIX A

A.1 Convergence of the posterior distribution

We will work with the hierarchy

Xi ∼ f (x |θi , ψ) i = 1, 2, . . . , p

θi ∼ π(θ |λ, ψ) (13)

λ ∼ g(λ|ψ),
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where m(x |ψ) = ∫ ∫
f (x |θ, ψ)π(θ |λ, ψ)g(λ|ψ) dθ dλ is the marginal distribution.

For unknown ψ , the Gibbs sampling estimate of the posterior density of the kth component of θ ,
θk , is given by π̂(θk |x, ψ̂) = 1

M

∑M
j=1 π(θk |x, ψ̂, λ( j)). For fixed k, we are concerned with the limiting

behavior of this estimate as M and p → ∞. We define

hψ(ψ ′) =
∫

π(θk |x, λ, ψ ′)g(λ|x, ψ) dλ

ĥψ(ψ ′) = 1

M

M∑
i=1

π(θk |x, λ(i), ψ ′), where λ(i) ∼ g(λ|x, θ(i), ψ),

so the subscript refers to the parameter of the density of integration (or generation) and the argument refers
to the parameter of the integrand (or summand). We want to show that if ψ̂p → ψ (as p → ∞) almost
everywhere (with respect to the density m), then ĥ

ψ̂p
(ψ̂p) → hψ(ψ) (as p → ∞) in the sense that for all

measurable A, ∫
A

|π̂(θk |x, ψ̂p) − π(θk |x, ψ)| dθk → 0

almost everywhere as M and p → ∞.
To ease notation a bit we have suppressed putting a subscript on the function ĥ to show that it depends

on M . The estimator ψ̂p depends on p but not M . In the following lemma we will need M → ∞ with
p, and we define a sequence Mp such that Mp → ∞ as p → ∞. The details of this are contained in the
proof of the following lemma.

LEMMA A.1 For the hierarchy (13), suppose that

(i) ψ̂p → ψ (as p → ∞) almost everywhere (with respect to m);
(ii) hψ(ψ ′) is continuous in both ψ and ψ ′;

(iii) ĥψ(ψ ′) is continuous in ψ ′ and stochastically equicontinuous in ψ : that is, given ε > 0, ∃δ > 0
with |ĥψ1(ψ

′) − ĥψ2(ψ
′)| < ε for all |ψ1 − ψ2| < δ except on a set with g-measure 0;

(iv) the Gibbs sampler produces an ergodic Markov chain.

Then there exists a sequence Mp, with limp→∞ Mp = ∞, for which

|ĥ
ψ̂p

(ψ̂p) − hψ(ψ)| → 0 as p → ∞ (14)

almost everywhere (with respect to the densities g and m).

Proof. Suppose that ψ0 is the true value of ψ , and let ε > 0 be given. Use the triangle inequality to write

|ĥ
ψ̂p

(ψ̂p) − hψ0(ψ0)| � |ĥ
ψ̂p

(ψ̂p) − ĥψ0(ψ0)| + |ĥψ0(ψ0) − hψ0(ψ0)|, (15)

where we have added ±ĥψ0(ψ0). The second term on the right does not involve ψ̂p, and converges to 0

by the Ergodic theorem. Specifically, for each p, choose M (1)
p so that this term is less than ε/3.

To deal with the first term in (15) we write

|ĥ
ψ̂p

(ψ̂p) − ĥψ0(ψ0)| � |ĥ
ψ̂p

(ψ̂p) − ĥ
ψ̂p

(ψ0)| + |ĥ
ψ̂p

(ψ0) − ĥψ0(ψ0)|, (16)

where we have added ±ĥ
ψ̂p

(ψ0). As p → ∞, the first term on the right in (16) goes to zero by

assumption (iii). Now, by Egorov’s theorem, we can choose p large enough so that |ψ̂p − ψ0| < δ

except on a set with probability less than ε/2. Also using assumption (iii), we then find M (2)
p so that

|ĥψ ′(ψ0) − ĥψ0(ψ0)| � ε/3 for all |ψ ′ − ψ0| < δ,
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except on a set with g-measure less than ε/2, and it then follows that the second term is bounded outside
this set by

|ĥ
ψ̂p

(ψ0) − ĥψ0(ψ0)| � sup
ψ ′:|ψ ′−ψ0|<δ

|ĥψ ′(ψ0) − ĥψ0(ψ0)| � ε/3.

Thus, for arbitrary ε > 0, we choose p large enough, and Mp = max{M (1)
p , M (2)

p }. Then the left side
of (15) is bounded by three terms, each of which can be made less than ε/3 except on a set with probability
less than ε, so (14) is established.

THEOREM A.1 Under the conditions of Lemma A.1, for each measurable A, as M and p → ∞,

∫
A

∣∣∣∣∣
1

M

M∑
j=1

π(θk |x, ψ̂p, λ
( j)) − π(θk |x, ψ)

∣∣∣∣∣ dθk → 0, (17)

almost everywhere (with respect to the densities g and m).

Proof. The proof is a direct consequence of Lemma A.1 and Scheffé’s Lemma (Resnick, 1999,
Lemma 8.2.1), which we state for completeness.

Scheffé’s Lemma. Let {F, Fn, n � 1} be probability distributions with densities { f, fn, n � 1}. Then,

1. supB∈B(�) |Fn(B) − F(B)| = 1
2

∫ | fn(x) − f (x)| dx .
2. If fn(x) → f almost everywhere, then

∫ | fn(x) − f (x)| dx → 0, and thus Fn(x) → F in total
variation.

So, by Scheffé’s Lemma, the convergence (14) implies (17).

REMARK In the proof of Lemma A.1, p and Mp depend on ψ0 so this is an existence proof. The
equicontinuity assumption it is not that restrictive in practice, as ĥ is a function of the densities π and
g of (13). The variables λ and ψ are typically continuous variables, with the density π being continuous
in λ, and g being continuous in ψ .

A.2 The bivariate Dirichlet

Random variables X1 and X2 have the Dirichlet distribution with parameters (a, b, c) if they have density
function

f (x1, x2) = �(a + b + c)

�(a)�(b)�(c)
xa−1

1 xb−1
2 (1 − x1 − x2)

c−1,

0 � x1, x2 � 1, x1 + x2 � 1.

This distribution has the property that X1 and X2 are negatively correlated. For the ulcer data introduced in
Section 1, a negative correlation between p1 and p2 does not make sense—we would expect the correlation
within a medical center to be non-negative.

If we define p1 = 1 − x1 and p2 = x2, then

π(p1, p2) = �(a + b + c)

�(a)�(b)�(c)
(1 − p1)

a−1 pb−1
2 (p1 − p2)

c−1,

0 � p1, p2 � 1, p1 � p2,

(18)
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and now p1 and p2 have non-negative correlation. In fact

Ep1 = b + c

a + b + c
Ep2 = b

a + b + c

Var p1 = a(b + c)

(a + b + c)2(a + b + c + 1)
Var p2 = b(a + c)

(a + b + c)2(a + b + c + 1)

Cov(p1, p2) = ab

(a + b + c)2(a + b + c + 1)
.

It also happens that the standard restriction that the sum of the variables is less than 1 becomes the
restriction that p1 j � p2 j : that is, that the treatment has a greater success probability than the control.

Although the restriction p1 � p2 seems very sensible, as one would believe that the new procedure
is no worse than the old, one of the reviewers pointed out that the restriction that the new procedure is
no worse than the old might be frowned on by regulatory agencies (among others). There are alternative
priors that do not impose this restriction. Here is one that preserves the conjugate hierarchical structure.
Referring to (18), we let our prior be π(p1, p2) with probability α, 0 � α � 1, and let it be π(p2, p1),
with probability 1−α. This prior allows p1 � p2 and p2 � p1, while preserving the correlation structure.
Moreover, Z ∼ Bernoulli(α), and conditional on Z , we have the same posterior distributions as in (9).
Then we can either estimate α, or put a prior on it to compute the EM/Gibbs sampler.

For the Gibbs sampler used in (9), the full conditionals are of the form

π(p1|p2) ∝ py1
1 (1 − p1)

n1−y1+a−1(p1 − p2)
c−1, p1 � p2

π(p2|p1) ∝ py2+b−1
2 (1 − p2)

n2−y2(p1 − p2)
c−1, p2 � p1.

An easy way to generate from these densities is to use an accept–reject algorithm with candidate random
variables from a truncated beta density. In particular, for generating p1:

1. Generate W ∼ beta(y1 + c, n1 − y1 + a). If W > p2 go to step 2, otherwise
generate another W.

2. Generate U ∼ Uniform(0, 1). If

U <

(
W − p2

W ∗ (1 − p2)

)c−1

accept p1 = W, otherwise go to step 1.

Recall that in the accept–reject algorithm, to get an observation from the target density f by generating
an observation from the candidate density g, the observation is accepted if U < 1

M
f
g , where M = sup f

g .
It is easy to show that

wy1(1 − w)n1−y1+a−1(w − p2)
c−1

wy1+c−1(1 − w)n1−y1+a−1
� (1 − p2)

c−1

for w � p2, which yields the bound in the algorithm.
A similar algorithm is used for generating p2, using a beta(y2 + b, n2 − y2 + c).
Calculating the joint distribution of the logodds can be done analytically, but the following Mathemat-

ica code can also be used.

f[x1 ,x2 ] := x1y1 ∗ (1− x1)n1−y1+a−1x2y2+b−1 ∗ (1− x2)n2−y2 ∗ (x1− x2)c−1

so := Solve

[{
v1 == Log

[
x1

1− x1

/
x2

1− x2

]
,v2 == x2

}
, {x1,x2}

]

g[v1 ,v2 ] = f[x1/.so[[1]],x2/.so[[2]]]
∗Abs[Det[Outer[D,First[{x1,x2}/.so], {v1,v2}]]]
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A.3 Standard errors

To obtain error estimates for the marginal likelihood estimators, we adapt a formula derived by Oakes
(1999). Using our notation, starting from (7), Oakes shows that

∂2

∂ψ2
log L(ψ |x) =

{
∂2

∂ψ ′2 E[log L(ψ ′|x, θ, λ)|ψ] + ∂2

∂ψ ′∂ψ
E[log L(ψ ′|x, θ, λ)|ψ]

}∣∣∣∣
ψ ′=ψ

where the expectation is taken with respect to π(θ, λ|x, ψ). If we now take the derivative inside the
expectation, we can rewrite Oakes’ identity as

∂2

∂ψ2
log L(ψ |x) = E

(
∂2

∂ψ2
log L(ψ |x, θ, λ)

∣∣∣∣ψ
)

+ E

[(
∂

∂ψ
log L(ψ |x, θ, λ)

)(
∂

∂ψ
log π(θ, λ|x, ψ)

)∣∣∣∣ψ
]
, (19)

which allows the Monte Carlo evaluation

∂2

∂ψ2
log L(ψ |x) = 1

M

M∑
j=1

∂2

∂ψ2
log L(ψ |x, θ( j), λ( j))

+ 1

M

M∑
j=1

(
∂

∂ψ
log L(ψ |x, θ( j), λ( j))

)(
∂

∂ψ
log π(θ( j), λ( j)|x, ψ)

)
,

where (θ( j), λ( j)), j = 1, . . . , M are from the Gibbs sampler which iterates between π(θ|x, λ, ψ) and
π(λ|x, θ, ψ).

If the density π(θ, λ|x, ψ) is not available, we can further modify (19) by recalling that

π(θ, λ|x, ψ) = L(ψ |x, θ, λ)

L(ψ |x)
.

If we take logs, differentiate, and use the fact (Oakes, 1999, equation 5) that

∂

∂ψ
log L(ψ |x) = E

(
∂

∂ψ
log L(ψ |x, θ, λ)

∣∣∣∣ψ
)

we can rewrite (19) as

∂2

∂ψ2
log L(ψ |x) = E

(
∂2

∂ψ2
log L(ψ |x, θ, λ)

∣∣∣∣ψ
)

+ E

[(
∂

∂ψ
log L(ψ |x, θ, λ)

)2∣∣∣∣ψ
]

−
[

E

(
∂

∂ψ
log L(ψ |x, θ, λ)

∣∣∣∣ψ
)]2

,

which only uses the complete-data likelihood, and is readily evaluated with a Monte Carlo sum. We note
that this last equation can be expressed in the rather pleasing form

∂2

∂ψ2
log L(ψ |x) = E

(
∂2

∂ψ2
log L(ψ |x, θ, λ)

∣∣∣∣ψ
)

+ var

(
∂

∂ψ
log L(ψ |x, θ, λ)

∣∣∣∣ψ
)

.
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A.4 The ulcer data

Data for the 39 experiments (medical centers). Each set of observations is {successes, number of trials}
for treatment and control, respectively.

Exp. Trt Control Exp. Trt Control Exp. Trt Control
1 {8, 15} {2, 13} 14 {14, 21} {20, 25} 27 {12, 17} {10, 15}
2 {11, 19} {8, 16} 15 {22, 25} {21, 32} 28 {10, 10} {2, 14}
3 {29, 34} {35, 39} 16 {7, 11} {4, 10} 29 {22, 22} {16, 24}
4 {29, 36} {27, 31} 17 {8, 10} {2, 10} 30 {16, 18} {11, 21}
5 {9, 12} {12, 12} 18 {30, 31} {23, 27} 31 {14, 15} {6, 13}
6 {3, 7} {0, 4} 19 {24, 28} {16, 31} 32 {16, 24} {12, 27}
7 {13, 17} {11, 24} 20 {36, 43} {27, 43} 33 {6, 12} {2, 9}
8 {15, 16} {3, 16} 21 {34, 40} {8, 21} 34 {20, 20} {18, 23}
9 {11, 14} {15, 22} 22 {14, 18} {34, 39} 35 {13, 17} {14, 16}

10 {36, 38} {20, 32} 23 {54, 68} {61, 74} 36 {30, 40} {8, 20}
11 {6, 12} {0, 8} 24 {15, 21} {13, 21} 37 {13, 16} {14, 16}
12 {5, 7} {2, 9} 25 {6, 6} {0, 6} 38 {30, 34} {14, 19}
13 {12, 21} {17, 24} 26 {9, 10} {10, 15} 39 {31, 38} {22, 37}
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