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Employing Vague Prior Information in
the Construction of Confidence Sets
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Cornell University
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In the problem of estimating the mean, 6, of a multivariate normal distribution,
an experimenter will often be able to give some vague prior specifications about 6.
This information is used to construct confidence sets centered at improved
estimators of 6. These sets are shown to have uniformly (in 8) higher coverage
probability than the usual confidence set (a sphere centered at the observations),
with no increase in volume. Further, through the use of a modified empirical Bayes
argument, a variable radius confidence set is constructed which provides a uniform
reduction of volume. Strong numerical evidence is presented which shows that the
empirical Bayes set also dominates the usual confidence set in coverage probability.
All these improved sets provide substantial gains if the prior information is correct.
Also considered are extensions to the unknown variance case, and a discussion of
applications to the one-way analysis of variance. In particular, a procedure is
presented which uniformly improves upon Schefié¢’s method of estimation of con-
trasts. © 1987 Academic Press, Inc.

1. INTRODUCTION

In the past twenty years, much progress has been made with the problem
of improving on the usual point estimator of a multivariate normal mean.
However, only recently has there been progress with the problem of
improving upon the usual confidence set. Let X ~ N(0, a*I) where, for now,
o? is assumed to be known. The usual confidence set is a p-dimensional
sphere centered at X with radius co, ie.,

CYy,=1{0:10—X|<co}.
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The constant c is chosen to satisfy P(x§<c2)= 1 —a, which implies that
P(0eC%,)=1—a and C%, has coverage probability 1 —a.

The usual confidence set C% , is minimax in the sense that among all the
confidence sets with coverage probability at least 1 —a, C% , minimizes the
maximum volume. Despite this optimality property (and many others), it
has been shown independently by Brown [4] and Joshi [11] that C%,, can
be improved upon provided p > 3. They showed that if p >3, there exists
another confidence set C®’ dominating C%, in the sense that

(a) Py(0eC™)> Po(6eCY,)
(b) volume C® <volume C%,,

with strict inequality holding in either (a) or (b) for a set of positive
Lebesgue measure of 6 or X, respectively.

More recently, Faith [8] derived an alternative confidence set by con-
sidering a version of a Bayes credible set. Berger [1] also developed alter-
native confidence sets. Starting with a prior that gives admissible minimax
point estimators, Berger constructed confidence ellipsoids centered at the
posterior mean and oriented by the posterior covariance matrix. Berger
and Faith both presented convincing analytical and numerical evidence
that their confidence sets dominate C% .

Hwang and Casella [9, 10] consider simpler confidence sets; spheres
recentered at the positive part James-Stein estimator. These confidence sets
are shown to dominate C% ,. In particular, Hwang and Casella [9] give the
first analytical proof that their confidence sets dominate C%,- Later,
Hwang and Casella [10] provide another, simpler proof which strengthens
these domination results. These stronger results form a base on which the
results of this paper are built.

Even though C%, can be improved upon uniformly, it is impossible to
significantly improve on C%, everywhere. (This is due to the minimaxity of
C%,.) So far, all the improved confidence sets proposed yield significant
improvement over C%, (either by increasing coverage probability or
decreasing volume) only when 6 and X are near a fixed point. Naturally, an
experimenter would choose the fixed point to be the most likely value of 0
(or the prior guess of 0) so that there is a good chance of realizing a sub-
stantial gain by using the improved confidence set.

In some situations, however, there may only be vague prior information
concerning the most likely value of 6. In particular, it may be thought that
6 lies in a linear subspace of the parameter space, perhaps described by the
equation HO=0, where H is a known matrix. (In the point estimation
problem, Bock [2,3] has many interesting results conerning these and
other forms of vague prior information.)

One useful type of prior information, particularly in the analysis of
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variance, is the specification that the 6/s are equal to a common, unknown
value. (This is the null hypothesis in the one-way analysis of variance.) We
interpret this type of vague prior information as stating that the 0, are close
to cach other, but it is not clear what is the common likely value. In such
situations, all of the above confidence sets may improve upon C%, only
slightly, and one might as well use C5,.

In this paper we consider confidence sets that are recentered at
estimators of the form

M X)=AX+ {1—[a02/|(I—A)X|2]}+ [((I—A4)X], (1.1)

estimators which shrink toward a linear subspace. We pay particular atten-
tion to the matrix 4= (1/p)11’, where 1 is a px 1 vector of ones. The
resulting estimator is

6"(X)=)21+[l—a02/|X—fl|2)]+(X—il), (1.2)

where = (1/p) 37—, X,, which is the positive-part version of the estimator
first derived by Lindley [14]. This estimator shrinks toward the estimate of
the common mean, %, and it is well known that, as a point estimator,
5%(X) dominates X (under sum of squared errors loss), provided 0 <a <
2(p —3). It is also known that 8%(X) yields significant improvement over X
as long as Y (6, — 0)?/a? is small, where 6= (1/p) 3 6,. Therefore, SL(X) is
a particularly pertinent point estimator when it is thought that the 0s are
close to each other. The same is true of the confidence sets based on &%, as
will be shown in this paper.

In Section 2, we prove that a confidence set recentered at 8% (with radius
¢o) dominates C% . Generalized confidence sets centered at an improved
estimator shrinking toward an arbitrary linear subspace are also con-
structed. Applications to the one-way analysis of variance model, and
other models, are discussed.

Section 3 develops (using an empirical Bayes approach) confidence sets
centered at 6* with radius uniformly smaller than the usual confidence set.
Numerical evidence shows that the coverage probability of these sets is at
Jeast 1 —o. When o2 is unknown, but an independent estimate, 52, of 62 is
available, we modify these sets by replacing o2 by-its estimate. Numerical
evidence also confirms the superiority of this adaptive empirical Bayes con-
fidence set over the usual confidence set (based on X and 52). Section 4 dis-
cusses applications of these results to the multiple comparisons problem. In
particular, it is shown that Scheffé’s procedure can be improved upon
uniformly (in the sense that, for the same confidence level, intervals with
smaller radii are constructed).
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2. Fixep RaADIUS CONFIDENCE SETS

2.1. Improved Confidence Sets for the Mean

In this section we consider fixed radius confidence sets centered at
estimators which shrink toward a linear subspace. For a fairly general class
of confidence sets we obtain dominance results similar to those of Hwang
and Casella [10]; that is, we prove that these recentered sets have
uniformly higher coverage probability than the usual confidence set.

Let X be an observation from a p-variate normal distribution with mean
vector 6 and covariance matrix ¢2/. (Generalization to an arbitrary, known
covariance matrix X is straightforward, and will be treated later in this sec-
tion.) Define the estimator 6 * (X) by

87 (X)=[1-(ac?/|X|*)]* X, 21)

where a is a positive constant, “ + ” denotes positive part, and |-|? is the

Euclidean norm. This is the well-known positive-part James-Stein

estimator, which shrinks the maximum likelihood estimator towards zero.
We consider estimators of the form.

SAX)=AX+6*[(I—A4) X], (22)

where 4 is a p x p symmetric, idempotent matrix, and confidence sets of the
form

Csa={0:]60—84(X)| <ca). (2.3)

The choice of the matrix 4 is usually based on prior information,
reflecting the belief that 4X is a reasonable estimator of 6. If
0<a<2(p—q—2), where q is the rank of 4, 54(X) is a minimax estimator
of 6 under squared error loss. Moreover, the region of significant risk
improvement is the region where |(/— A) 6|/o is small. Comparing this to
the estimator 4 * (X), which yields significant risk improvement only when
|0|/o is small, shows that 67(X) has a wider region of significant
improvement, and is very efficient if the prior belief is true.

The performance of the confidence set Cy4 parallels that of §4(X). As will
be seen in Theorem 2.1, for suitable choices of a, C;4 dominates C%, in
coverage probability. It is also shown that the coverage probability
depends on 6 only through |[(/—A)#8|/o. This, and, for g=1, the
numerical results reported in Tables II and III, show that the region where
C;a significantly improves upon C° is widened in a way similar to the point
estimation case. Consequently, C;4 is very useful if the prior information is
correct, and still dominates C%, even if the prior information is incorrect.

As mentioned before, we will also focus on the special case 4 = (1/p) 11’, -
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where 1 is a p x 1 vector of ones. This choice of 4 reflects the belief that the
;s are close together (or exchangeable), which is the case if the ANOVA
null hypothesis is true. The resulting estimator is

M(X)=x1+6"(X—x1), (24)

the positive-part Lindley estimator. The coverage probability of the
associated confidence set

Co=1{0:10—06“X)|<co} (2:5)

depends on 0 only through 37 (6;— 6)*/s>. Thus, similar to §*(X), é"(X)
significantly widens the region of improvement, obtaining maximal
improvement when the 0,’s are close together.

We now proceed to establish the dominance of C;« over C%, by
extending the results of Hwang and Casella [10], who give conditions for
the dominance of Cs:={0:|0—6*(X)|<co} over C%,. Define the
functions G,(a, c¢) and H (a, c) by

SN (C Iy
a

2.6
ct+/EHaPt Ll tda—c (26)
Ha,c)=| ——F— e Yy
\/Z 2\/;
Lemma 2.1 [10]. If p=3, the confidence set
Cs+={0:10—06%(X)|<co} 2.7)

has higher coverage probability than C, , for every 6 provided a> 0 and ¢ >0
satisfy Go(a, ¢)=1 and Hy(a, c) = 1.

The dominance of Cs4 over C%, can now be established by using a trans-
formation to reduce the problem to that of Lemma 2.1.

THEOREM 2.1. Let A be a symmetric, idempotent matrix of rank gq,
p—q>2. The confidence set Csa has higher coverage probability than C%,
for every 0 provided 0 < a< ay, where a, is the minimum of the two unique
solutions to

G,a,c)=1 and H,a c)=1. (2.8)

Consequently, since Cs« and C%, have the same volume, C;« uniformly
dominates C% . Furthermore, the coverage probability of Cs« depends on 6
only through |(I— A) 6|/e.
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TABLE 1
Values of g, for g=1

p a=0.10 a=0.05 p a=0.10 a=0.05
4 0.669 0.633 15 9.888 9.675
5 1.517 1.458 16 10.731 10.510
6 2.392 2.281 17 11.574 11.345
7 3.211 3.083 18 12.418 12.182
8 4.036 3.893 19 13.263 13.020
9 4.865 4.710 20 14.109 13.859

10 5.697 5.531 21 14.955 14.699

11 6.532 6.355 22 15.802 15.539

12 7.369 7.182 23 16.650 16.381

13 8.207 8.011 24 17.498 17.223

14 9.047 8.842 25 18.346 18.065

Remark. Values of a, for g=1 and a=0.1 and 0.05 are given in
Table 1. These values of a, do not reach the value p — 3, which is the stan-
dard choice for the point estimation problem. However, by comparing
TablesII and III, it can be seen that the differences in coverage
probabilities are minimal.

Proof. Without loss of generality, let 6> =1 (simply make the transfor-
mation Y = X/o). Write

16— 5%(x)1>=|[40 — AX]+ {(I—A) 06— 6" [(I—A) X]}|*
=A@ —-X)P+|(I—A)0—-8*[(I—-A4) X112, (29)

TABLE 1I
Coverage Probabilities of the Set Cs with a=a,, a =0.10

p
4 8 12 16 20 24
0—61|/c

0 0.940 0.991 0.998 0.999 0.999 0.999

1 0.936 0.990 0.998 0.999 0.999 0.999

2 0927 0.985 0.997 0.999 0.999 0.999

3 0910 0976 0.994 0.998 0.999 0.999

4 0.905 0.956 0.988 0997 0.999 0.999

6 0.902 0.930 0.962 0.983 0.994 0.998

8 0.901 0918 0.941 0962 0978 0.989
10 0.901 0912 0928 0.946 0.961 0974
20 0.900 0.903 0.908 0914 0.920 0927
50 0.900 0.901 0.901 0.902 0.904 0.905

100 0.900 0.900 0.900 0.901 0.901 0.901
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TABLE III
Coverage Probabilities of the Set Cs with a=p—3, «=0.10

p
4 8 12 16 20 24
16—61]/c

0 0.952 0.995 0.999 0.999 0.999 0.999
1 0.948 0.994 0.999 0.999 0.999 0.999
2 0.936 0.990 0.999 0.999 0.999 0.999
3 0.911 0.982 0.997 0.998 0.999 0.999
4 0.905 0.958 0.991 0.998 0.999 0.999
6 0.902 0.931 0.963 0.985 0.995 0.998
8 0.901 0.919 0.942 0.964 0.980 0.990
10 0.901 0912 0.929 0.947 0.963 0.978
20 0.900 0.903 0.908 0914 0.921 0.928
50 0.900 0.901 0.901 0.902 0.904 0.905
100 0.900 0.900 0.900 0.901 0.901 0.901

where the second equality follows from the fact that 4 is symmetric idem-
potent and consequently satisfies A'(/— A4)=0. Furthermore, there exists
an orthogonal matrix P satisfying PAP'=D,, where D, is a diagonal
matrix whose first ¢ diagonal elements are 1 and last p — g are zero. Define

Y =PX, n=P6. (2.10)

It follows that Y ~ N(n, I) and we have

10—64X)2= 3 (=Y’ + 3 (n—[1—(a/SY1* ¥,})% (211)

i=1 i=q+1

where S, =37 Y2. Using the facts that the Ys are independent and

i=qg+1

i (ni— Yi)ZNXg, we have
Py[160—6%(X)|><?]

=ICZP.1< f In;—[1—(a/Sy)]™" Y,~|2<c‘2—l>gq(t)dt, (2.12)
0

i=q+1

where g,(¢) is the pdf of a x2 random variable. The theorem will be
established if we can show that for every b satisfying 0 <b*<c?,

P"( z {”"‘U-WSY)]*Yf}2<b2)>Pn( S (- Y.~)2<b2>,
i=q+1 i=q+1

(2.13)
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since substituting the right-hand side of (2.13) for the integrand in (2.12)
yields : ~

Pilo-s 0P <> [ (S m-vr<e i) g0
(V]

i=q+1

=Py(|0—X|2< ). (2.14)

To establish (2.13) we use Lemma 2.1. Since (Y, y,.., ¥,) is distributed
as a (p —g)-variate normal random variable with mean (n,,,,..,%,) and
identity covariance matrix, by Lemma 2.1 it is sufficient to establish that
G,a,b)>1and H,(a,b)>1 for 0<a<a, and 0 <b*< >

We will only give details for the proof that G, (a, b)>1 for 0<b’><c?,
the proof being similar for H,(a, c). Note that, for each value of b, the
function G (a, b) is decreasing in a. Hence, it is sufficient to establish that
G, (a*, b) > 1, where a* satisfies G ,(a*, c) = . It is straightforward to check
that (9/0b) log G (a, b) is strictly decreasing in b. Hence, G (a*, b) either
strictly decreases to zero in b or strictly increases to a unique maximum
and then strictly decreases to zero. However, the former case is impossible
since G (a*, 0) =G (a*, c)=1. Hence, the latter case implies G (a*, b)> 1
for 0<b*<c :

Finally, from (2.12), an orthogonal transformation will show that the
coverage probability is a function only of ¥7_ ., n?=|(I—A4)0|%. 1

It is straightforward to extend the results of Theorem 2.1 to the case
when X has an arbitrary, known covariance matrix X. In this case, the
usual confidence set is

CL={0:(0—X) Z-"0-X)<c*}. (2.15)

For a given matrix 4, define A* by
A* =2 g3~ (2.16)
and

a +
_X’(I—A*)’Z“(I-—A*)X)

5""(X)=A*X+<1 I—A4%)X. (217)

The confidence set associated with §47(X) is

Cor=1{0:[0—-6""(X)] Z7'[0—-56*"(X)] < ?}. (2.18)

The following corollary shows that Cs- is a uniform improvement over C%.

oy
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COROLLARY 2.1. The confidence set Czu has uniformly higher coverage
probability than C% provided

(i) A is symmetric, idempotent of rank q, p—q>2, and
(i) O<a<aqy, where ag is the unique solution to (2.8).

Proof. The transformation Y=X"'2X reduce this to the case of
Theorem 2.1. |}

2.2. Applications

In this section we consider various cases of the estimators and confidence
sets constructed in Section 2.1. We pay particular attention to the type of
prior information which may be useful in achieving the greatest possible
improvement.

EXAMPLE 1. The unbalanced one-way analysis of variance. In a one-
way ANOVA model, it is assumed that there are p treatments characterized
by the levels 0,,..,0,, and there are n; iid. N(6,, 6?) observations
X1,y X3, The variance, ¢?, is assumed to be known.

By sufficiency, we can consider only procedures depending on X; =
(1/n;) ¥, X, 1<i<p. The vector X=(X,,., X,)" has a multivariate
normal distribution with mean (6,,..,0,) and covariance matrix
X =¢>D;', D,=diag(n,,..., n,). The usual confidence set is

C%,={0:(6—X) D,(6—X)<c??*}. (2.19)

Corollary 2.1 provides better confidence sets, however.

Consider the situation when prior information indicates 8s are very
likely to be close. Under the assumption that 0,=0;, Vi, j, the classical
estimator (the uniformly minimum variance unbiased estimator and the
maximum likelihood estimator) of the common value 6 is X = (1/N) X7_,

" X, where N=2n,. In this situation, the reasonable estimator to use is
one which shrinks X to an estimate of the common 6. If we take
A=DY*11'D}?/N, we have A*=11'D,/N, and

ac?

‘5"‘7’=*‘+[‘“m

]+ (X —x1), (2.20)

a version of the positive-part Lindley estimator. Note that 4 is a sym-
metric, idempotent matrix, and hence Corollary 2.1 shows that the con-
fidence set

Cowr={0:[0— 6 (%)) D,[6— 6" ()] <c0?} (221)

uniformly dominates C%, provided 0 < a < a,, where q, is the largest value
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which satisfies G,(a,¢)>=1 and H(a,c)21. For a=0.1 and 0.05, the
values of a, are given in Table 1.

Another, somewhat more vague, prior specification which may be useful
is to suppose that 8 is a multiple of a known vector, i.e., 6 =ar, where a is
an unknown scalar and r is a known vector. If r =1, this case reduces to
the previous situation. Under the model 6 = ar, the classical estimator (i.e.,
the uniformly minimum unbiased estimator and the maximum likelihood
estimator) of 6 is

S(X)y=rm'Z-'X/r'Z"'r (2.22)
with ith component

O X)=r.Z;rim; X,/Znr}.

It is therefore reasonable to consider 6 that shrinks X toward 6'(X). If
we choose

A=D\2rr'DY?/r'D,r, (2.23)

which is symmetric and idempotent, we have A*=D;'24D!?=
rr'D,/r'D,r. Corollary 2.1 then shows that a confidence set of the form
(2.21) centered at

ac?

hI A ni[Yi_ 5;(7)]2

5A‘(X)=5'()?)+[1 — T [X—6(X)]

dominates one centered at §"(X).

ExXAMPLE 2. Olies in a linear subspace. We now consider a more
general form of restriction, one in which the prior information indicates
that 0 lies in a linear subspace of the parameter space. This example
includes the case of the general linear model (with known variance) as a
special case, if X, below, is taken to be the least squares estimator.

Assume X ~ N(0, X), where X is a nonsingular known matrix. Suppose
that the prior information indicates that 6 lies in the plane

L,={0:H6=0},
where H is a k x p matrix with rank k. Assuming 6 € L, it can be shown

that the classical estimator (the uniformly minimum variance unbiased
estimator and the maximum likelihood estimator) of 8 is 4*X with

A*=I—SH(HEH')"'H.

vy
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In Corollary 2.1, let A=I—X""?H'(HZH')"' HX"?, which is sym-
metric and idempotent. The resulting estimator is

+
5"(X)=A*X+[1 a ] ZH'(HZH')"! HX,

XH(HXH) 'HX
and it follows that the confidence set centered at this estimator uniformly
dominates the one centered at A*X provided 0 < a < a,, where a, satisfies
G.(a,c)=1and Hi(a,c)=1.

If, instead, prior belief indicates that 6 is near L, = {0: H§ =m}, which
is assumed to be a nonempty set with H being as above and m a known
k-component vector, we can proceed as follows. Assume that 6,€ L, i€,
Hf,=m. By transforming X'=X—0, and 6 =0—0,, the problem is
reduced to the above setting. It then follows that an improved confidence
set can be constructed by centering at the estimator

o1 (X)=[X—ZH'(HZH)"' (HX—m)]

a +
+ [1 " (HX—m) (HZH)™! (HX—m)]

x SH'(HZH')~' (HX — m).

3. VARIABLE RADIUS CONFIDENCE SETS

The confidence sets considered in Section 2 are all of fixed radius and,
hence, afford no volume reduction over the usual set. Although sets such as
Cs. of (2.5) yield uniformly higher coverage probability, an experimenter
must report the same confidence coefficient as reported if the usual set,
C?‘,‘a, had been used. Thus, to the experimenter, there is no tangible
evidence that Cy should be preferred over C% .

Since the coverage probability of Cy; can be much greater than that of
C%,, there seems to be room for decreasing its volume without giving up
dominance in coverage probability. The construction of such confidence
sets is the focus of this section.

We confine our attention to the estimator

(10'2 +

YX)=x - X—x1), 3.1
50 =1+ (1 ) (X=s1) 1)
the positive-part Lindley estimator. Through the use of transformations
like those in Section 2, the results of this section can be generalized to
include estimators such as 6“4 of (2.2), and associated confidence sets.
However, we will not consider such generalizations here.

In Section 3.1 we derive, through the use of a modified empirical Bayes
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argument, a variable radius confidence set based on 6“(X). It is shown that
this set has uniformly smaller volume than the usual confidence set and, in
fact, can provide significant volume reduction. Also, the exact formula for
the coverage probability is derived. Although dominance in coverage
probability is not demonstrated analytically, strong numerical evidence is
presented which shows that the empirical Bayes confidence set is superior
to the usual set. Section 3.2 deals with the case of unknown o2, where the
empirical Bayes sets are modified by replacing ¢ by an estimate. Again,
these sets-yield a reduction in volume, and (based on numerical evidence)
also dominate the usual confidence set in coverage probability.

3.1. Empirical Bayes Confidence Sets
We now consider confidence sets of the form

{0:10—58"(X)|>*<v(X, 0)}, (3.2)

where v is a nondecreasing function of | X' — x1]. It is a difficult task to find
a function v that will yield a confidence set dominating the usual one in
coverage probability. To get some idea of what form such a function will
take, we use an empirical Bayes argument. We begin by deriving a Bayes
rule against the loss function

L(0, C) =k Volume (C) — I.(0), (3.3)

where 1-(0) =1 if 6 € C and zero otherwise. For this loss function, the usual
confidence set

C%,={0:10—X|<ca}

is minimax if k = ko = exp(—c?/26%)/(2na?)"2. Since k,, is the only value of
k for which C%, is minimax, it seems reasonable to use this value in deriv-
ing a Bayes rule. Furthermore, Casella and Hwang [6, Theorems 2.1, 2.2,
and 2.3] argue that a rule that is minimax with respect to L, is likely to
dominate C%,.

An empirical Bayes argument has been previously used [5] to derive
confidence sets centered at the positive-part James—Stein estimator. There,
normal priors were used in a way parallel to the derivation of the
James-Stein point estimator in Efron and Morris [7]. More recently,
Morris [15] has used empirical Bayes arguments to construct improved
confidence intervals. Out goal here is to derive confidence sets centered at
8(X) so, naturally, we consider Lindley’s two-stage prior, namely

X |0, 6>~ N(0, 6*I)
0 |p, >~ N(ul, °1) (34)

u ~ Uniform(— oo, o).
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The improper prior on the scalar u can be interpreted as an approximation
to an n(0, 1%) density, where A? is much larger than ¢ or °
From Joshi [12] or Faith [8], it follows that the Bayes rule against L,
is
CP={0:n(0|X)=k}, (3.5)

where n(6|X) is the posterior density of 6. Direct calculation shows that
the posterior distribution is N[5%(X), 2], where ‘

1’.2

o*+1°

2—'—(1+i p v —
T\ T2 ’ T+

0B(X)=x1+ (X —x1),

(3.6)

Setting k =k,, the Bayes rule against L, can be written (after some
algebra) as

CB= {0: [6-6%X)Y V-0 -0B(X)] <vB(7? 0'2)} (3.7)
where
B(.2 .2 a’c? 2 202, 2
v (T,O’)=m{c —(p—1)log[t*/(z*+0%)]}. (3.8)

The prior variance, t7 is usually unknown, and the empirical Bayesian
will replace 72> by an estimate taken from the marginal density of X.
Marginally, 3'7_, (X;— X)*~ (6°+1%) x2_,, and it follows that

E{l—(”_”"z} i (3.9)

Tx—%)2 T+t

The empirical Bayes strategy is to replace t2/(t> + ¢?) in v® by its unbiased
estimate. However, the unbiased estimate may be negative, which is
undesirable. Hence, we truncate the unbiased estimate, and replace v® by
the modified empirical Bayes estimate

vE(X, 6)=0?T[c*—(p—1)log T] (3.10)
where
_ 2 — 2
1_(}7 3)i72 i Z(X.z X) >
T— Z2(X;—Xx) o (.11)
B - (X —x%)? ) '
1273 i ZED

c g
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We assume that ¢? > p — 3 so that log T is defined. This an extremely minor
assumption since c¢?>=p—3 would give C%, a confidence coefficient of
approximately 0.3.

Now consider the left-hand side of the inequality in (3.7). Direct
calculation shows

2
[0—8%(X)]) V1[0 6%(X)]=16—6B(X)|*— ”f_az(x-é)% - (3.12)

1,2

If we use the empirical Bayes strategy on (3.12), this will lead us to a very
complicated confidence set. It-not only will be hard to interpret (it may not
be convex), but also its coverage probability will be quite hard to evaluate.
Thus, we take a simpler alternative, and merely drop the last term in (3.12)
(which also decreases the volume of the confidence set). Upon replacing
5B(X) by its estimate, 6%(X), we obtain our recommended confidence set

CE,={0:160—56"(X)|> <v¥(X, 0)}. (3.13)

The coverage probability of C%, can be evaluated by using a decom-
position similar to that used in Section 2, Theorem 2.1. Taking ¢”=1 we
have

2
Po(0€CEo)= [ Py {In=0"(NIP<[*1 YD) =11} gi(1) dr, (3.14)

where Y~N,_,(n, 1), n=0—01, 6*(Y)=[1—(p=3)/IYI’]" ¥, g,(t) is
the density of a y? random variable, and

=1ty -0 - ( st |

To evaluate the integrand of (3.14), transform to the spherical coordinates
r=|Y|, cos B=1n"Y/|n|| Y|. We then have

{In=0*(MIP<[v*(1Y)-11"}
= {r’y*(r)=2ry(r)Inlcos B+ |n > < [v*(r)—1]"},  (3.15)

where y(r)=[1—(a/r*)]*.
Some algebra will show that this last set can be written as

{(r,B):resS,,, cos B> h(r, 1)}, (3.16)

where S, , is either an interval, or the union of two disjoint intervals, and is
defined by

Syo={ri{inl~[r—=(a/)]* < o*(r)—1]1"}, (3.17)

»
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and
r2y?(r)+|n|* = [v*(r)—1]1" } .
ax{ , —1 if r(r)#£0
h(r. 1) = 2r |n| y(r)
-1 if ry(r)=0.
(3.18)

We thus have the following representation for the coverage probability of
Cko

THEOREM 3.1. If p=3, for |6—61|>0,

c? cos—! (h)
P(0eCE )=K j j j r?=(sin )7 ~?
0 S, 0

.t

xexp{—(r*—=2r|n| cos B+ |n|*)/2} g\(t)dB drdt,  (3.19)

where K“‘=\/;1"[(p——2)/2] 200=32 pn=160—-01|/0, and g,(¢) is the
density of a y2 random variable. If |6 —61|=0, then Py(6eC5,) =
jgzP[xf,_,er,(O, t)] g.(t) dt, where r (1, t)=max{r:reS,,}.

Proof. If |6—61|=0, the set {Y:|n—6*(V)>*<[v*(|Y])—1t]1"}
clearly contains ¥ =0. Hence S,, is an interval and the result follows. The
result for |@—@1|>0 is easily established by carrying out the spherical
transformation. ||

If vE is constant, as in Section 2, then it is possible to express (3.17) as an
interval. The fact that this cannot be done when vF is nonconstant is the
major reason why dominance of C%, over C%, in coverage probability
cannot be established analytically. Formula (3.19) has been evaluated
numerically, however. For a=p—3 and a=0.1, coverage probabilities of
C% , are presented in Table IV. We choose to use a=p—3, rather than
a=a,, because this value produces a better point estimator than a=a,,
and is more readily available to an experimenter. The numerical evidence
shows that, with the exception of p =4 and a=0.1, C%, provides a uniform
improvement over C% ,. Moreover, the failure of C%  is so slight (for exam-
ple, a minimum coverage probability of 0.891 for a=0.1) that for all
intents and purposes, C%, can be regarded as a 1 — o confidence set.

The important feature of C% , however, is that it provides a reduction in
volume over C% . This is established in the following theorem.

THEOREM 3.2. If ¢®>p— 1, the radius of C%, is uniformly (in | X — x1|)
smaller than that of C%,. Hence, C% , has uniformly smaller volume.
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TABLE 1V
Coverage Probabilities of the Empirical Bayes Confidence Set C%_, «=0.10

4
4 8 12 16 20 24
10—61|/c
0 0937 0.987 0.997 0.999 0.999 0.999
1 0934 0.985 0.996 0.999 0.999 0.999
2 0920 0976 0.993 0.998 0.999 0.999
3 0.892 0.950 0.984 0.995 0.998 0.999
4 0.891 0.906 0.941 0.968 0.991 0.997
6 0.896 0.902 0921 0.939 0.952 0.961
8 0.898 0.903 0916 0933 0.950 0.961
10 0.898 0.902 0912 0.925 0938 0.950
20 0.899 0.900 0.903 0.907 0912 0917
50 0.899 0.900 0.900 0.901 0.902 0.903
100 0.900 0.900 0.900 0.900 0.900 0.900

Proof. From (3.10),
v5(X, 0)=0’T[c*—(p—1)log T],

where T is defined in (3.11). Differentiation shows (9v%/0T)>0, which
implies that v® is a nondecreasing function of 7. Since 7 is a nondecreasing
function of | X —x1|, and 0 < T< 1, it follows that v® is nondecreasing in
| X—x1|, and is bounded by c?o2. |

TABLE V
Ratio of the Radii of C§, to C% for «=0.10

P
4 8 12 16 20 2
| X—x1|/c
0 0.958 0.883 0.847 0.823 0.804 0.789
1 0.958 0.883 0.847 0.823 0.804 0.789
2 0.958 0.883 0.847 0.823 0.804 0.789
3 0.964 0.883 0.847 0.823 0.804 0.789
4 0.980 0.907 0.847 0.823 0.804 0.789
6 0.991 0.964 0937 0.906 0.868 0.818
8 0.995 0.980 0.968 0955 0.941 0926
10 0.997 0988 0.980 0973 0.966 0.959
20 0.999 0.997 0.995 0.994 0.993 0991

50 0.999 0.999 0.999 0.999 0.999 0.999
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To get an idea of the amount of possible improvement, Table V gives
values of the ratio of the radii of C§, to C%,, ie,

Radius of C§, _ [T[cz —(p—1)log T]]”z, (3.20)

Radius of C%,, ¢

As can be seen in Table V, the amount of possible improvement can be
substantial if | X — x1| is small. We also note that, in terms of volume
reduction (rather than radius reduction) the improvement is even greater.
The ratio of volumes is obtained by raising (3.20) to the pth power and,
hence, is smaller than the ratio of the radii.

3.2. The Case of Unknown Variance

We assume now that ¢? is unknown, but an estimate s? of ¢2, indepen-
dent of X, is available, where s*> ~ (¢%/v) x2. The usual 1 —a confidence set
for 0 is

€%, ={0:10— X|*<s%c?}, (321)

where ¢’ satisfies P(F,,<c?/p)=1—a, where F,, denotes an F-random
variable with p and v degrees of freedom.

In order to obtain an improved confidence set, it should be possible to
proceed as in Section 3.1, and consider a modified empirical Bayes set.
However, it is no longer clear as to which priors would lead us to
reasonable empirical Bayes sets. An obvious choice would be to use a con-
jugate prior, but such calculations lead to enormously complicated sets
with no easily discernible optimality properties. One disconcerting fact is
the following: consider the simple known variance case X |6~ N(6, o*I)
and 0|t>~ N(0, t2). As 1> oo, the Bayes set converges to C%, and
the Bayes risk converges to the risk of C% .. This no longer occurs
in the unknown variance case. For the conjugate priors
(8|02 12~ N(0, 6212I), 6% ~ Inverse Gamma) as 1> — oo, neither the Bayes
set nor the Bayes risk converges to that of CY ..

Thus, we consider the simpler alternative of replacing ¢ in CE by its
estimate, s, and form the confidence set

CE,={0:10—8"(X, 5)|><vE(X, 5)}, (3.22)
where
UE(X’ S) = SZT\-[CZ - (p -1 ) lOg T\v],

52 (X, —x)?
———Z(;'s B if 2 —X) 's2 x) >
= i 3.
T a, - osx—wy, OB
1‘——2- if — <,
c S
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a,s?

5L(X, S)‘-—‘—‘.fl +<1 —m

>+ (X —x1),
and
a,=v(p—3)/(v+2).

The choice a = a, again reflects the fact that a, results in an optimal point
estimator. Also, if we assume the structure of (3.4) and merely regard ¢2 as
a nuisance parameter, we have (similar to (3.9))

a,s? 72
T — x)z] T+t (3.24)

lim E [1
Thus, C¥% | retains somewhat of an empirical Bayes flavor.

Again, dominance of coverage probability of C%; over C% could not be
obtained analytically. The major reason for this is the same as in. the
known variance case: the limits of integration could not be solved
explicitly. However, the exact formula for the coverage probability of C%
is straightforward to derive, and can be easily obtained for the formula for
the coverage probability of C% .

THEOREM 3.3. The coverage probability of C%  is
P0eCE) =" PLIO-3(X, 1P <o"(X, 0]g(d;,  (325)
0

where g (t) is the density of a x? random variable, and 5" and v® are given in
(3.23).

Proof. The formula follows immediately from the independence of X
and s> |

The integrand in Eq. (3.25) can be evaluated using Theorem 3.1. Values
of the coverage probability have been evaluated numerically for p =4, 10,
v=2, 5, 10, 20, 30, and a=0.1, and are presented in Table VI. With the
exception of p=4, and a few other cases (not reported here) where v=2,
C%., demonstrates almost uniform dominance in coverage probability over
C%.- Again, when CE | fails, the failure is so slight that it is reasonable to
treat C%  as a 1 —a confidence set.

C%, does provide a uniform reduction in volume over C%, and, similar
to Theorem 3.2, we have the following theorem.

THEOREM 3.4. If ¢>>p—1, then Volume(C%,) < Volume(C%,) for all
values of X and s*.
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TABLE VI

Coverage Probabilities for the Set C%, a=0.1

2 S 10 20 30
16—61|/0
p=4
0 0.901 -0.909 0918 0.926 0.929
1 0.901 0.907 0916 0.923 0.926
2 0.900 0.903 0.907 0912 0914
4 0.900 0.898 0.897 0.895 0.894
6 0.900 0.899 0.898 0.897 0.897
8 0.900 0.899 0.899 0.899 0.899
10 0.900 0.899 0.899 0.899 0.899
15 0.900 0.899 0.900 0.900 0.900
20 0.900 0.899 0.900 0.900 0.900
p=10
0 0.903 0.926 0953 0.973 0.981
1 0.902 0.924 0.950 0.971 0.978
2 0.902 0.919 0.942 0.962 0.971
4 0.901 0.909 0.919 0927 0.929
6 0.900 0.904 0.908 0910 0910
8 0.900 0.902 0.905 0.907 0.908
10 0.900 0.901 0.903 0.905 0.905
15 0.900 0.901 0.901 0.902 0.903
20 0.900 0.900 0.901 0.901 0.902

Proof. From (3.23), it is clear that the ratio of the radii of C% to C%
(and hence the ratio of the volumes) is a function of the data only through
Z(X,— x)*/s* The theorem is then established in a manner similar to that
of Theorem 3.2. |

Selected values of the radius ratio are presented in Table VII. While the
reduction in volume is not as much as for the known variance case, C%
can provide good volume reduction if Z(X;— x)*/s® is small.

4. ESTIMATION OF CONTRASTS IN THE ONE-WAY ANALYSIS OF VARIANCE

Often, in the analysis of variance, an experimenter is not only interested
in testing the overall hypothesis that the treatment means are equal, but
also in testing or estimating linear combinations of the means. The con-
fidence sets developed in the previous two sections can be readily adapted
to such situations. In fact, the variable radius confidence sets of Section 3




98 CASELLA AND HWANG

TABLE VII
Ratio of the Radii of C§, to C},, =0.1

2 S 10 20 30
| X —x1}/s
p=4
0 0.994 0.980 0971 0.965 0.963
1 0.994 0.980 0.971 0.965 0.963
2 0.994 0.980 0.971 0.965 0.963
4 0.994 0.982 0.981 0.981 0.980
6 0.994 0.992 0.992 0.991 0.991
8 0.996 0.996 0.995 0.995 0.995
10 0.998 0.997 0.997 0.997 0.997
15 0.999 0.999 0.999 0.999 0.999
20 0.999 0.999 0.999 0.999 0.999
p=10
0 0983 0.942 0913 0.892 0.884
1 0.983 0.942 0913 0.892 0.884
2 0.983 0.942 0913 0.892 0.884
4 0.983 0.942 0913 0.892 0.884
6 0.983 0.947 0.946 0.947 0.948
8 0.983 0.971 0.971 0.972 0.972
10 0.984 0.982 0.982 0.982 0.983
15 0.993 0.992 0.992 0.992 0.993
20 0.996 0.996 0.996 0.996 0.996

provide a procedure that is a uniform improvement over the S-method of
Scheffé [16].

Recall the setup of the one-way analysis of variance, mentioned in
Section 2, Example 1. For any px1 vector a, we call Yola)=2a,0; a
comparison of the means 6,,.., 6. In addition, if Za,=0, Ye(a) is called a
contrast. The classic estimator of We(a) is V¥ x(a)=Za,X,. The multiple
comparison procedure of Scheffé [16], the S-method, can be summarized
as follows.

THEOREM 4.1 (Scheffé). (a) The probability is 1 — o that simultaneously
|Y (@) — ¥o(a)| < (PFapys*Z:ai/n)"? (41)
for all vectors a.
(b) The probability is 1 —a that simultaneously
1Wx(a@) = Vo(@)| < ((p—1) Fop_1,5°Zai/n)'? (42)

for all vectors a such that Xa;=0.
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The Scheffé intervals can be used either for estimation or testing. They
are very flexible in their ability to handle all contrasts, and to provide exact
probability statements even for unbalanced data. The major drawback of
the Scheffé intervals is that they are very conservative. For example, if one
is only interested in pairwise differences, it would be better to use Tukey’s
procedure (sometimes referred to as the Q-method), which provides shorter
intervals for the same a level (see also [13]).

The Scheffé intervals are based on a confidence ellipse centered at the
observations. Since the confidence sets detailed in Sections2 and 3 are
improvements over this ellipse, we expect intervals based on these sets to
improve upon the Scheffé intervals.

For an estimator 8(X, s) of 0, define ¥ ;(a) by

Ys(a)=Za,0(X, s). (4.3)

We have the following theorem, which shows the relationship between the
improved confidence sets and improved intervals.

THEOREM 4.2. Let D,=diag(n,,.., n,). If the confidence set
Cs=1{0:(0—6(X,s)) D,(6— 5(X, s)) <vE(X, 5)} (4.4)
is a 1 —a confidence set, then the probability is 1 —a that simultaneously
|¥5(a) — ¥ola)| < [0E(X, 5) Za}/n]"* (4.5)

for all vectors a.

Proof.

P{|Vs(a)—¥o(a)|> <vE(X, 5) Za}/n;for all a}

- o OB SE  r)

=P{[6-6(X,s)] D,[0—-56(X,s)1<vE(X,s)}. 1

Generalization of this theorem, and the rest of the results in this section,
for the case when the covariance matrix is not diagonal is straightforward
and will not be dealt with explicitly.
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We now will use Therem 4.2 to construct intervals based on the
confidence set C% of Section 3. For the analysis of variance setup of this
section, the appropriate version of C%  is

C%,={0:(0—0"(X, 5))’ D,(6—6"(X, 5)) <v™(X, 5)}, (4.6)

where 6“(X, 5) and v®(X, s) are defined as in (3.23) with the exceptions that
2(X,—x)? is replaced by Zn,(X,— x)* and c? is replaced by pF,,, . If C%
is 1 — o confidence set, then the probability is 1 —a that simultaneously

|Wo(a) = Ysula)l < [VE(X, 5) Za}/n,]'2 (4.7)

for all vectors a. Theorem 3.4 guarantees that if pF,,,>p—1, then
v8(X, 5) < spF,,,. Hence, by comparing (4.1) to (4.7), it follows that the
intervals of (4.7) are uniformly shorter than the Scheffé intervals. Of course,
it was not demonstrated analytically that C%, is a 1 —a confidence set.
However, the numerical evidence for this case is quite strong (with the
exceptions noted in Section 3).

To get an idea of the possible improvement that the intervals in (4.7) can
provide over the corresponding S-intervals given in (4.1), Table VII can be
used. For a given p, the entries in Table VII give the ratio of the lengths of
the intervals in (4.7) to the corresponding Scheffé intervals in (4.1).

For the case of simultaneous estimation of contrasts, the argument is
similar, the only difference being that the intervals are taken from a p—1
dimensional ellipse. (The space of all contrasts is a (p— 1)-dimensional
subspace of the p-dimensional parameter space.) Similar to Theorem 4.2,
we have the following theorem for contrasts, which we state without proof.

THEOREM 4.3. Let X~ N(0, D;'). Define the px (p—1) matrix Q by
Q=W,_,, —1), and let Y=Q'X, n= Q0. If the confidence set

Cy={n:[n—Q(X,5)1(Q'D;'Q)"" [n—Q'4(X,s)]<v™(X,5)} (48)
is a 1 —a confidence set, then the probability is 1 —a that simultaneously

|W5(a) — ¥ola)| < [vE(X, 5) Za}/n]"? (49)

for all vectors a such that Za;=0.

For this case our recommended confidence set, and hence simultaneous
intervals for all contrasts can again be described by (3.23) with two excep-
tions. We again replace Z(X,— x)? with Zn(X,— X)? but now we replace
cZ by (p— 1)F‘a,p- Ly

To see more clearly how we arrive at this new modification vE for the

-
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case of contrasts, we can calculate explicitly the ellipse (4.8) of Theorem 4.3
when we use the estimator 6%(X, s). It is easy to check that

Q’al‘(,\—’ S)=( avs2 >+ Ydiné(Y)
P T\rep oY !

since Q'x1=0 and Zn(X,—X)’=Y(Q'D;'Q)"'Y. Furthermore,

Y=Q'X is distributed as a (p— 1)-dimensional normal random variable

with mean 7= Q' and covariance matrix Xy =0*Q'D;'Q)". Thus, the

intervals in (4.9) will have simultaneous coverage probability at least 1 —«

if the (p — 1)-dimensional confidence set

Cy={n:[n—6(X)Y Z,[n—8(Y)]1<vE(Y,s)} (4.10)

is a 1 —a confidence set.

Note that the estimator §(Y) shrinks Y toward zero rather than toward
a linear subspace, and thus the associated confidence set is a special case of
the sets in Sections 2 and 3, obtained by taking the matrix A4 =0. Also, if ¢

TABLE VIII

Coverage Probabilities for the Simultaneous Intervals Given in (4.9), a=0.10

v

2 S 10 20 30
[Zn(6,—0)*/a*]'?
p=4
0 0.902 0912 0.924 0.933 0.937
1 0.902 0911 0.923 0932 0.936
2 0.901 0.906 0914 0.921 0.926
4 0.899 0.899 0.898 0.897 0.896
6 0.899 0.899 0.899 0.899 0.898
8 0.900 0.900 0.899 0.899 0.899
10 0.900 0.900 0.900 0.900 0.900
15 0.900 0.900 0.900 0.900 0.900
20 0.900 0.900 0.900 0.900 0.900
p=10
0 0.904 0.930 0.959 0.979 0.986
1 0.903 0.928 0.956 0.977 0.984
2 0.902 0.923 0.948 0.970 0.978
4 0.901 0911 0.925 0.935 0.938
6 0.901 0.905 0911 0916 0.907
8 0.900 0.903 0.907 0910 0.911
10 0.900 0.902 0.904 0.907 0.908
15 0.900 0.901 0.902 0.903 0.904

20 0.900 0.900 0.901 0.902 0.902
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is known, then the coverage probability of C, can be obtained from
Theorem 3.1 by merely setting =0 in (3.17) and (3.18), and eliminating
the integral over ¢ in (3.19). For the case of unknown o2, one proceeds as
in Theorem 3.3, and integrates this probability against the 12 density. It is
also easy to verify that the coverage probability of C, depends on the
unknown parameters only through #'Xy'n=60'Q(Q'D;'Q)~! Q'0/6>=
Zn/0,—0)*/a. (Sets such as C,, which are centered at estimators that
shrink toward a known point rather than a linear subspace, are treated in
more detail in Casella and Hwang [5].)

The coverage probability of C,, and hence of the associated intervals,
has been evaluated numerically for p=4, 10, v=2, 3, 5, 10, 20, 30, and
a=0.1, and are presented in Table VIII. With the exception of a few cases
when p=4 or v=2, the coverage probability of C, is above 0.90. Again,
the few failures are so slight that it is reasonable to consider Cyral—a
procedure.

If we apply Theorem 3.4 to the intervals associated with C,, we find that
a sufficient condition for these intervals to be uniformly shorter than the

TABLE IX
Ratio of the Radii of the Intervals in (4.9) to the Corresponding Scheffé Intervals

~

T~ v
2 5 10 20 30
[Zn(X —x)¥s*]'?
p=4
0 0.992 0.976 0.966 0.961 0.958
1 0.992 0.976 0.966 0.961 0.958
2 0.992 0.976 0.966 0.961 0.958
4 0.992 0.984 0.983 0.983 0.983
6 0.994 0.993 0.993 0.993 0.993
8 0.997 0.996 0.996 0.996 0.996
10 0.998 0.997 0.997 0.997 0.997
15 0.999 0.999 0.999 0.999 0.999
20 0.999 0.999 0.999 0.999 0.999
p=10
0 0.981 0.937 0.907 0.886 0.877
1 0.981 0.937 0.907 0.886 0.877
2 0.981 0.937 0.907 0.886 0.877
4 0.981 0.937 0.907 0.886 0.877
6 0.981 0.949 0.949 0.951 0.952
8 0.981 0.972 0973 0.974 0.975
10 0.984 0.982 0.983 0.984 0.984
15 0.993 0.992 0.992 0.993 0.993

20 0.996 0.996 0.996 0.996 0.996

w
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corresponding Scheffé intervals is F,,_, , > 1. The ratio of the radii of these
intervals is given by

vR(E, ) Zaifny 1T (1— e TV) T e
(P“ l)sta,p-—l.vzalg/ni B Y ’ '

ap—1,v

where T, is described following Theorem 4.3. Values of this ratio for
p=4,10, v=2, 5, 10, 20, 30, and «=0.10 have been calculated, and are
given in Table IX. The reduction in length is quite respectable, and is even
greater than for the case of estimation of contrasts (compare Tables VII
and IX).

The results of this section also apply to the case of known variance. The
relevant intervals are obtained by letting v — oo, in the expressions given in
this section. (As v — o, s> > 67, and pF,,, — x2,.) The results also apply
to the fixed radius confidence sets of Section 2, for which it was proved that
the coverage probability is bounded below by 1 —a. For these confidence
sets, it follows from Theorem 4.2 that the simultaneous intervals construc-
ted will have confidence coefficient 1 —a. Although these intervals will
uniformly improve upon the Scheffé intervals in terms of coverage
probability, they will, of course, have the same length.
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