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Ordinal categorical responses

• Patient recovery, quality of life (excellent, good, fair, poor)

• Pain (none, little, considerable, severe)

• Diagnostic evaluation (definitely normal, probably normal,

equivocal, probably abnormal, definitely abnormal)

• Political philosophy (very liberal, slightly liberal, moderate,

slightly conservative, very conservative)

• Government spending (too low, about right, too high)

• Categorization of an inherently continuous variable, such as

body mass index, BMI = weight(kg)/[height(m)]2,

measured as (< 18.5, 18.5-25, 25-30, > 30)

for (underweight, normal weight, overweight, obese)

For ordinal response variable y with c categories, our focus is on

modeling how

P (y = j), j = 1, 2, . . . , c,

depends on explanatory variables x (categorical and/or

quantitative).

The models treat observations on y at fixed x as multinomial.
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Outline

Section 1: Logistic Regression Models Using Cumulative Logits

(“Proportional odds” and extensions)

Section 2: Other Ordinal Response Models

(adjacent-categories and continuation-ratio logits, stereotype

model, cumulative probit, log-log links, count data responses)

Section 3 on software summary and Section 4 summarizing

research work on ordinal modeling included for your reference but

not covered in these lectures

This is a shortened version of a 1-day short course for JSM 2010,

based on Analysis of Ordinal Categorical Data (2nd ed., Wiley,

2010), referred to in notes by OrdCDA.
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Focus of tutorial

– Survey of approaches to modeling ordinal categorical responses

– Emphasis on concepts, examples of use, complicating issues,

rather than theory, derivations, or technical details

– Examples of how to conduct methods using SAS, but output

provided to enhance interpretation of methods, not to teach

SAS. For R (and S-Plus) and Stata, we list functions and give

references for details in Section 3; e.g., detailed tutorial by

Laura Thompson shows how to use R for nearly all models in

this tutorial (link at www.stat.ufl.edu/∼aa/cda/software.html).

Joe Lang (Univ. of Iowa) R function mph.fit fits some

nonstandard models we consider (link at

www.stat.ufl.edu/∼aa/ordinal/ord.html).

– We assume familiarity with basic categorical data methods

(e.g., logistic regression, likelihood-based inference).
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But first, .... , why not just assign scores to the ordered categories

and use ordinary regression methods?

• With categorical data, there is nonconstant variance, so

ordinary least squares (OLS) is not optimal.

• In iterative fitting process for ML or WLS assuming multinomial

data, at some settings of explanatory variables, estimated

mean may fall below lowest score or above highest score and

fitting fails.

For binary response, this approach simplifies to linear

probability model, P (y = 1) = α + β′x, (i.e., response

scores 1, 0), which rarely works with multiple explanatory

variables.

• With categorical data, we may want estimates of conditional

probabilities rather than conditional means.

• Regardless of fitting method or distributional assumption,

ceiling effects and floor effects can cause bias in results.
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Example: Floor effect (Sec. 1.3 of OrdCDA)

For underlying continuous variable y∗, suppose

y∗ = 20.0 + 0.6x − 40z + ε

with x ∼ uniform(0, 100), P (z = 0) = P (z = 1) = 0.50,

ε ∼ N(0, 102).

For a random sample of size n = 100, suppose

y = 1 if y
∗ ≤ 20, y = 2 if 20 < y

∗ ≤ 40, y = 3 if 40 < y
∗ ≤ 60,

y = 4 if 60 < y
∗ ≤ 80, y = 5 if y

∗

> 80.

When x < 50 with z = 1, there is a very high probability that

observations fall in the lowest category of y.

As a consequence, least squares line when z = 1 has only half

the slope of least squares line when z = 0 (and interaction is

statistically and practically significant).
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1 Logistic Regression Models Using

Cumulative Logits

Ordinal Associations in Contingency Tables
(Section 2.2 of OrdCDA)

Notation: nij = count in row i, column j of r × c table cross

classifying row variable x and column variable y

pij = nij/n, where n = total sample size (joint)

When y response and x explanatory, conditional

pj|i = nij/ni+, where ni+ = total count in row i.

Then,
∑

j pj|i = 1 for each i.

Sample conditional cumulative proportions,

F̂j|i = p1|i + · · · + pj|i, j = 1, 2, . . . , c,

recognize ordering of categories of y.

Denote population conditional probabilities in row i by

πj|i = P (y = j | x = i), j = 1, 2, . . . , c,

or (π1, π2, . . . , πc) when suppress explanatory variables
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Ordinal odds ratios: (text Figure 2.2, p. 20, OrdCDA)

• For 2×2 table, sample odds ratio is

θ̂ =
p1|1/p2|1

p1|2/p2|2
=

p11p22

p12p21
=

n11n22

n12n21

For r × c tables, (r − 1)(c − 1) ordinal odds ratios include:

• Local odds ratios

θ̂L
ij =

nijni+1,j+1

ni,j+1ni+1,j

• Global odds ratios

θ̂G
ij =

(
∑

a≤i

∑

b≤j nab)(
∑

a>i

∑

b>j nab)

(
∑

a≤i

∑

b>j nab)(
∑

a>i

∑

b≤j nab)

• Cumulative odds ratios

θ̂C
ij =

(
∑

b≤j nib)(
∑

b>j ni+1,b)

(
∑

b>j nib)(
∑

b≤j ni+1,b)
=

F̂j|i/(1 − F̂j|i)

F̂j|i+1/(1 − F̂j|i+1)
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Corresponding population ordinal odds ratios:

• Local odds ratios

θL
ij =

P (x = i, y = j)P (x = i + 1, y = j + 1)

P (x = i, y = j + 1)P (x = i + 1, y = j)

• Global odds ratios

θG
ij =

P (x ≤ i, y ≤ j)P (x > i, y > j)

P (x ≤ i, y > j)P (x > i, y ≤ j)

• Cumulative odds ratios

θC
ij =

P (y ≤ j | x = i)/P (y > j | x = i)

P (y ≤ j | x = i + 1)/P (y > j | x = i + 1)

• Another ordinal odds ratio, used for “sequential” processes

such as survival, is the continuation odds ratio,

θCO
ij =

P (y = j | x = i)/P (y > j | x = i)

P (y = j | x = i + 1)/P (y > j | x = i + 1)
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For a given ordinal odds ratio, association is called

positive when all log odds ratios are positive,

negative when all log odds ratios are negative.

• If all log θL
ij > 0, then all log θC

ij > 0

• If all log θC
ij > 0, then all log θG

ij > 0.

• Ordinal odds ratios are natural parameters for ordinal logit

models (e.g., effects in the cumulative logit model presented

next are summarized by cumulative odds ratios).

• Alternative ways to summarize r × c tables include summary

measures of association such as

(1) extensions of Kendall’s tau that summarize relative

numbers of concordant (C) and discordant (D) pairs:

gamma = γ̂ = (C − D)/(C + D) (Sec. 7.1 of OrdCDA)

stochastic superiority measure for 2×c tables

P (y1 > y2) + 1
2P (y1 = y2) (Sec. 2.1 of OrdCDA)

(2) correlation measures for fixed or rank scores (Sec. 7.2)
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Cumulative Logit Model with Proportional Odds
(Sec. 3.2–3.5 of OrdCDA)

y an ordinal response (c categories), x an explanatory variable

Model P (y ≤ j), j = 1, 2, · · · , c − 1, using logits

logit[P (y ≤ j)] = log[P (y ≤ j)/P (y > j)]

= αj + βx, j = 1, . . . , c − 1

This is called a cumulative logit model

As in ordinary logistic regression, effects described by odds ratios

(comparing odds of being below vs. above any point on the scale,

so cumulative odds ratios are natural)

For fixed j, looks like ordinary logistic regression for binary

response (below j, above j)
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(Figure 3.1 from OrdCDA, p. 47)

Model satisfies

log

[

P (y ≤ j | x1)/P (y > j | x1)

P (y ≤ j | x2)/P (y > j | x2)

]

= β(x1 − x2)

for all j (Proportional odds property)

• Model assumes effect β identical for every “cutpoint,”

j = 1, · · · , c − 1

• β = cumulative log odds ratio for 1-unit increase in predictor

• For r × c table with scores (1, 2, . . . , r) for rows, eβ is

assumed uniform value for cumulative odds ratio.
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• Model extends to multiple explanatory variables,

logit[P (y ≤ j)] = αj + β1x1 + · · · + βkxk

that can be qualitative or quantitative

(use indicator variables for qualitative explanatory var’s)

• For subject i, estimated conditional distribution function is

P̂ (yi ≤ j) =
exp(α̂j + β̂

′
xi)

1 + exp(α̂j + β̂
′
xi)

Estimated probability of outcome j is

P̂ (yi = j) = P̂ (yi ≤ j) − P̂ (yi ≤ j − 1)

• Logistic regression is special case c = 2

• Uses ordinality of y without assigning category scores

• Can motivate proportional odds structure with regression

model for underlying continuous latent variable

(Anderson and Philips 1981, related probit model – Aitchison

and Silvey 1957, McKelvey and Zavoina 1975)
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y = observed ordinal response

y∗ = underlying continuous latent variable,

cdf G(y∗ − η) with η = η(x) = β′x

thresholds (cutpoints) −∞ = α0 < α1 < . . . < αc = ∞ such

that

y = j if αj−1 < y∗ ≤ αj

Ex. earlier in notes, p. 6. Then (Figure 3.4, p. 54 of OrdCDA)

P (y ≤ j | x) = P (y∗ ≤ αj | x) = G(αj − β′x)

→ Model G−1[P (y ≤ j | x)] = αj − β′x

Get cumulative logit model when G = logistic cdf (G−1 = logit).

So, cumulative logit model fits well when regression model holds for

underlying logistic response.

Note: Model often expressed as

logit[P (y ≤ j)] = αj − β′x.

Then, βj > 0 has usual interpretation of ‘positive’ effect

(Software may use either. Same fit, estimates except for sign)
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Other properties of cumulative logit models

• Can use similar model with alternative “cumulative link”

link[P (yi ≤ j)] = αj − β′xi

of cumulative prob.’s (McCullagh 1980); e.g., cumulative probit

model (link = inverse of standard normal cdf) applies naturally

when underlying regression model has normal y∗.

• Effects β invariant to choice and number of response

categories (If model holds for given response categories, holds

with same β when response scale collapsed in any way).

• For subject i, let (yi1, . . . , yic) be binary indicators of the

response, where yij = 1 when response in category j. For

independent multinomial observations at values xi of the

explanatory variables for subject i, the likelihood function is

n
Y

i=1

 c
Y

j=1

»

P (Yi = j | xi)

–yij
ff

=

n
Y

i=1

 c
Y

j=1

»

P (Yi ≤ j | xi) − P (Yi ≤ j − 1 | xi)

–yij
ff

=

n
Y

i=1

 c
Y

j=1

»

exp(αj + β′
xi)

1 + exp(αj + β′
xi)

−
exp(αj−1 + β′

xi)

1 + exp(αj−1 + β′
xi)

–yij
ff
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• Model fitting requires iterative methods. Log likelihood is

concave (Pratt 1981). To get standard errors,

Newton-Raphson inverts observed information matrix

−∂2L(β)/∂βa∂βb (e.g., SAS PROC GENMOD)

Fisher scoring inverts expected information matrix

E(−∂2L(β)/∂βa∂βb) (e.g., SAS PROC LOGISTIC).

• McCullagh (1980) provided Fisher scoring algorithm for

cumulative link models and described more general model also

having dispersion effects.

• Inference uses standard methods for testing H0: βj = 0

(likelihood-ratio, Wald, score tests) and inverting tests of H0:

βj = βj0 to get confidence intervals for βj .

(Wald z =
β̂j−βj0

SE , or z2 ∼ χ2 poorest method for small n)

• Software for ML fitting includes PROC LOGISTIC and

GENMOD in SAS, the polr function (proportional odds logistic

regression) in MASS library distributed with R (or S-Plus), the

oglm program in Stata, and the plum program in SPSS.
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Checking goodness of fit

• With nonsparse contingency table data, can check goodness of

fit using Pearson X2, deviance G2 comparing observed cell

counts to expected frequency estimates.

• At setting xi of predictors with ni =
∑c

j=1 nij multinomial

observations, expected frequency estimates equal

µ̂ij = niP̂ (y = j), j = 1, . . . , c.

• Pearson test statistic is

X2 =
∑

i,j

(nij − µ̂ij)
2

µ̂ij
.

Deviance (likelihood-ratio test statistic for testing that model

holds against unrestricted alternative) is

G2 = 2
∑

i,j

nij log

(

nij

µ̂ij

)

.

df = No. multinomial parameters − no. model parameters

• With sparse data, continuous predictors, can use such

measures to compare nested models.
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Example: Detecting trend in dose response

Effect of intravenous medication doses on patients with

subarachnoid hemorrhage trauma (p. 207, OrdCDA)

Glasgow Outcome Scale (y)

Treatment Veget. Major Minor Good

Group (x) Death State Disab. Disab. Recov.

Placebo 59 25 46 48 32

Low dose 48 21 44 47 30

Med dose 44 14 54 64 31

High dose 43 4 49 58 41

Model with linear effect of dose (scores x = 1, 2, 3, 4) on

cumulative logits for outcome,

logit[P (y ≤ j)] = αj + βx

has ML estimate β̂ = −0.176 (SE = 0.056)

Likelihood-ratio test of H0 β = 0 has test stat. = 9.6 (df = 1, P =

0.002), based on twice difference in maximized log likelihoods

compared to simpler model with β = 0.
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SAS for modeling dose-response data

data trauma;

input dose outcome count @@;

datalines;

1 1 59 1 2 25 1 3 46 1 4 48 1 5 32

2 1 48 2 2 21 2 3 44 2 4 47 2 5 30

3 1 44 3 2 14 3 3 54 3 4 64 3 5 31

4 1 43 4 2 4 4 3 49 4 4 58 4 5 41

;

proc logistic; freq count; * proportional odds cumulative logit model;

model outcome = dose / aggregate scale=none;

run;

----------------------------------------------------------------------

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 18.1825 11 1.6530 0.0774

Pearson 15.8472 11 1.4407 0.1469

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 9.6124 1 0.0019

Score 9.4288 1 0.0021

Wald 9.7079 1 0.0018

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1 -0.7192 0.1588 20.5080 <.0001

Intercept 2 1 -0.3186 0.1564 4.1490 0.0417

Intercept 3 1 0.6916 0.1579 19.1795 <.0001

Intercept 4 1 2.0570 0.1737 140.2518 <.0001

dose 1 -0.1755 0.0563 9.7079 0.0018
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Goodness of fit statistics: X2 = 15.8 and G2 = 18.2 (df = 16 − 5

= 11), P -values = 0.15 and 0.18.

Odds ratio interpretation: For dose i + 1, estimated odds of

outcome ≥ y (instead of < y) equal exp(0.176) = 1.19 times

estimated odds for dose i, with 95% confidence interval

e0.176±1.96(0.056) = (1.07, 1.33).

• Odds ratio for dose levels (rows) 1 and 4 equals

e(4−1)0.176 = 1.69

• Any equally-spaced scores (e.g. 0, 10, 20, 30) for dose provide

same fitted values and same test statistics (different β̂, SE).

• Unequally-spaced scores more natural in many cases (e.g.,

doses may be 0, 125, 250, 500). “Sensitivity analysis” usually

shows substantive results don’t depend much on that choice,

unless data highly unbalanced (e.g., Graubard and Korn 1987).

• Alternative analysis treats dose as factor, using indicator

variables. Deviance reduces only 0.12, df = 2. With β1 = 0:

β̂2 = −0.12, β̂3 = −0.32, β̂4 = −0.52 (SE = 0.18 each)

Testing H0: β1 = β2 = β3 = β4 gives LR stat. = 9.8 (df =

3, P = 0.02).

Using ordinality often increases power (focused on df = 1).
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For simplicity of showing data, our examples use contingency table

data, but in general the data file may have both categorical and

quantitative explanatory variables.

Example: SAS modeling of mental health

y = mental impairment

(1=well, 2=mild impairment, 3=moderate impairment, 4=impaired)

x1 = number of “life events”

x2 = socioeconomic status (1 = high, 0 = low)

Subj Mental SES Life Subj Mental SES Life

1 Well 1 1 21 Mild 1 9

2 Well 1 9 22 Mild 0 3

3 Well 1 4 23 Mild 1 3

4 Well 1 3 24 Mild 1 1

5 Well 0 2 25 Moderate 0 0

6 Well 1 0 26 Moderate 1 4

7 Well 0 1 27 Moderate 0 3

8 Well 1 3 28 Moderate 0 9

9 Well 1 3 29 Moderate 1 6

10 Well 1 7 30 Moderate 0 4

11 Well 0 1 31 Moderate 0 3

12 Well 0 2 32 Impaired 1 8

13 Mild 1 5 33 Impaired 1 2

14 Mild 0 6 34 Impaired 1 7

15 Mild 1 3 35 Impaired 0 5

16 Mild 0 1 36 Impaired 0 4

17 Mild 1 8 37 Impaired 0 4

18 Mild 1 2 38 Impaired 1 8

19 Mild 0 5 39 Impaired 0 8

20 Mild 1 5 40 Impaired 0 9
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data impair;

input mental ses life;

datalines;

1 1 1

1 1 9

1 1 4

...

4 0 8

4 0 9

;

proc logistic;

model mental = life ses ;

run;

proc genmod;

model mental = life ses / dist=multinomial link=clogit lrci type3;

run;

OUTPUT FROM PROC GENMOD

Analysis Of Parameter Estimates

Likelihood Ratio

Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square

Intercept1 1 -0.2819 0.6423 -1.5615 0.9839 0.19

Intercept2 1 1.2128 0.6607 -0.0507 2.5656 3.37

Intercept3 1 2.2094 0.7210 0.8590 3.7123 9.39

life 1 -0.3189 0.1210 -0.5718 -0.0920 6.95

ses 1 1.1112 0.6109 -0.0641 2.3471 3.31

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

life 1 7.78 0.0053

ses 1 3.43 0.0641

e.g., 95% likelihood-ratio confidence interval for the cumulative odds ratio for SES is (e−0.064, e2.347 ) = (0.94, 10.45);

the odds of mental impairment below any particular point could be as much as 10.45 times as high for those with high SES compared

to those with low SES, for a given level of life events
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Alternative ways of summarizing effects

• Some researchers find odds ratios difficult to interpret.

• Can compare probabilities or cumulative prob’s for y directly,

such as comparing P̂ (y = 1) or P̂ (y = c) at maximum and

minimum values of a predictor (at means of other predictors).

ex.: At mean life events of 4.3, P̂ (y = 1) = 0.37 at high SES

and P̂ (y = 1) = 0.16 at low SES.

For high SES, P̂ (y = 1) = 0.70 at x1 = min = 0 and

P̂ (y = 1) = 0.12 at x1 = max = 9.

For low SES, P̂ (y = 1) = 0.43 at x1 = min and

P̂ (y = 1) = 0.04 at x1 = max.

• Summary measures of predictive power include

(1) concordance index (prob. that observations with different

outcomes are concordant with predictions)

(2) correlation between y and estimated mean of conditional

dist. of y from model fit, based on scores {vj} for y

(mimics multiple correlation, Sec. 3.4.6 of OrdCDA).
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Checking fit and selecting a model

• Lack of fit may result from omitted predictors (e.g., interaction

between predictors), violation of proportional odds assumption,

wrong link function, dispersion as well as location effects.

• Some software (e.g., PROC LOGISTIC) provides score test of

proportional odds assumption, by comparing model to more

general “non-proportional odds model” with effects {βj}. This

test applicable also when X2, G2 don’t apply, but is liberal

(i.e., P(Type I error) too high) and more general model can

have cumulative prob’s out-of-order.

• Can check particular aspects of fit using (1) likelihood-ratio test

to compare to more complex models (test statistic = change in

deviance), (2) standardized cell residuals such as

rij =
(nij − µ̂ij)

SE
or

(
∑j

k=1 nik) − (
∑j

k=1 µ̂ik)

SE

• Even if proportional odds model has lack of fit, it may usefully

summarize “first-order effects” and have good power for testing

H0: no effect, because of its parsimony (e.g., p. 30 example).
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• Other criteria besides significance tests can help select a good

model, such as by minimizing

AIC = −2(log likelihood — number of parameters in model)

which penalizes a model for having many parameters. This

attempts to find model for which fit is “closest” to reality, and

overfitting (too many parameters) can hurt this.

• Advantages of utilizing ordinality of response include:

No interval-scale assumption about distances between

response categories (i.e., no scores needed for y)

Greater variety of models, including ones that are more

parsimonious than models that ignore ordering (such as

baseline-category logit models)

Greater statistical power for testing effects (compared to

treating categories as nominal), because of focusing effect on

smaller df .
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Improved power using ordinality

Consider r × c table with ordered rows, columns.

H0: independence between x and y

Pearson X2 =
∑ (nij−µ̂ij)

2

µ̂ij
with µ̂ij = (ni+n+j)/n

ignores orderings, df = (r − 1)(c − 1).

How does power compare to testing H0: β = 0 against Ha:

β 6= 0 in cumulative logit model, logit[P (y ≤ j)] = αj + βxi,

with scores {xi = i} for rows (i.e., using orderings, df = 1)?

(Could use LR test, score test, or Wald test)

Powers when underlying bivariate normal, correlation 0.20, uniform

row and column prob’s, n = 100, significance level 0.05:

r × c Pearson X2 Ordinal test

2×3 0.23 0.31

4×4 0.16 0.42

6×6 0.12 0.48

10×10 0.09 0.51

Note: Inference for single parameter also less susceptible to

problems (e.g., infinite estimates) due to sparseness of data



28

Sample size for comparing two groups
(Sec. 3.7.2 of OrdCDA)

Want power 1 − β in α-level test for effect of size β0 (in

proportional odds model). Let {πj} = marginal probabilities for y.

For two-sided test with equal group sample sizes, need

approximately (Whitehead 1993)

n = 12(zα/2 + zβ)2/[β2
0(1 −

∑

j

π3
j )],

Setting {πj = 1/c} provides lower bound for n. Then, sample

size n(c) needed for c categories satisfies

n(c)/n(2) = 0.75/[1 − 1/c2].

Relative to continuous response (c = ∞), using c categories has

efficiency (1 − 1/c2).

Substantial loss of information from collapsing to binary response,

but little gain with c more than about 5. In medical research,

continuous variables often converted to binary, which introduces

measurement error and loss of power.
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Cumulative logit models without proportional odds
(Sec. 3.6 of OrdCDA)

Generalized model permits effects of explanatory variables to differ

for different cumulative logits,

logit[P (yi ≤ j)] = αj + β
′

jxi, j = 1, . . . , c − 1.

Each predictor has c − 1 parameters, allowing different effects for

logit[P (yi ≤ 1), logit[P (yi ≤ 2)], . . . , logit[P (yi ≤ c − 1)].

Even if this model fits better, for reasons of parsimony a simple

model with proportional odds structure is sometimes preferable.

• Effects of explanatory variables easier to summarize and

interpret.

• With large n, small P -value in test of proportional odds may

reflect statistical significance, not practical significance.

• Effect estimators using simple model are biased but may have

smaller MSE than estimators from more complex model, and

tests may have greater power, especially when more complex

model has many more parameters.

• Is variability in effects great enough to make it worthwhile to

use more complex model?
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Example: Religious fundamentalism by region (2006 GSS data)

y = Religious Beliefs

x = Region Fundamentalist Moderate Liberal

Northeast 92 (14%) 352 (52%) 234 (34%)

Midwest 274 (27%) 399 (40%) 326 (33%)

South 739 (44%) 536 (32%) 412 (24%)

West/Mountain 192 (20%) 423 (44%) 355 (37%)

Create indicator variables {ri} for region and consider model

logit[P (y ≤ j)] = αj + β1r1 + β2r2 + β3r3

Score test of proportional odds assumption compares with model

having separate {βi} for each logit, that is, 3 extra parameters:

-----------------------------------------------------------------------

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

93.0162 3 <.0001

-----------------------------------------------------------------------
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SAS for GSS religion and region data

data religion;

input region fund count;

datalines;

1 1 92

1 2 352

1 3 234

2 1 274

2 2 399

2 3 326

3 1 739

3 2 536

3 3 412

4 1 192

4 2 423

4 3 355

;

proc genmod; weight count; class region;

model fund = region / dist=multinomial link=clogit lrci type3 ;

run;

proc logistic; weight count; class region / param=ref;

model fund = region / aggregate scale=none;

run;

------------------------------------------------------------------

GENMOD output:

Analysis Of Parameter Estimates

Likelihood Ratio

Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square

Intercept1 1 -1.2618 0.0632 -1.3863 -1.1383 398.10

Intercept2 1 0.4729 0.0603 0.3548 0.5910 61.56

region 1 1 -0.0698 0.0901 -0.2466 0.1068 0.60

region 2 1 0.2688 0.0830 0.1061 0.4316 10.48

region 3 1 0.8897 0.0758 0.7414 1.0385 137.89

region 4 0 0.0000 0.0000 0.0000 0.0000 .
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Model assuming proportional odds has (with β4 = 0)

(β̂1, β̂2, β̂3) = (−0.07, 0.27, 0.89)

For more general model,

(β̂1, β̂2, β̂3) = (−0.45, 0.43, 1.15) for logit[P (Y ≤ 1)]

(β̂1, β̂2, β̂3) = (0.09, 0.18, 0.58) for logit[P (Y ≤ 2)].

Change in sign of β̂1 reflects lack of stochastic ordering of first and

fourth regions

Compared to resident of West, a Northeast resident is less likely to

be fundamentalist (see β̂1 = −0.45 < 0 for logit[P (Y ≤ 1)])

but slightly more likely to be fundamentalist or moderate and slightly

less likely to be liberal (see β̂1 = 0.09 > 0 for logit[P (Y ≤ 2)]).

Peterson and Harrell (1990) proposed partial proportional odds

model falling between proportional odds model and more general

model (Sec. 3.6.4 of OrdCDA),

logit[P (yi ≤ j)] = αj + β
′

xi + γ
′

jui, j = 1, . . . , c − 1.

An alternative possible model adds dispersion effects

(McCullagh 1980, Sec. 5.4 of OrdCDA)

logit[P (y ≤ j)] =
αj − β′

x

exp(γ′x)
.
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Example: Smoking Status and Degree of Heart Disease

Smoking Degree of Heart Disease

status 1 2 3 4 5

Smoker 350 (23%) 307 (20%) 345 (22%) 481 (31%) 67 (4%)

Non-smoker 334 (45%) 99 (13%) 117 (16%) 159 (22%) 30 (4%)

y ordinal: 1 = No disease, ..., 5 = Very severe disease

x binary: 1 = smoker, 0 = non-smoker

Sample cumulative log odds ratios:

−1.04, −0.65, −0.46, −0.07.

Consider model letting effect of x depend on j,

logit[P (Y ≤ j)] = αj + β1x + (j − 1)β2x.

Cumulative log odds ratios are

log θ
C
11 = β1, log θ

C
12 = β1 + β2, log θ

C
13 = β1 + 2β2, log θ

C
14 = β1 + 3β2.

Model fits well (G2 = 3.43, df = 2, P -value = 0.18)

Obtained using Joe Lang’s mph.fit function in R

(analysis 2 at www.stat.ufl.edu/∼aa/ordinal/mph.html).

ML estimates

β̂1 = −1.017 (SE = 0.094), β̂2 = 0.298 (SE = 0.047)

give estimated cumulative log odds ratios

log θ̂
C
11 = −1.02, log θ̂

C
12 = −0.72, log θ̂

C
13 = −0.42, log θ̂

C
14 = −0.12.
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Some Models that Lang’s mph.fit R Function Can Fit by ML:

• mph stands for multinomial Poisson homogeneous models,

which have general form

L(µ) = Xβ

for probabilities or expected frequencies µ in a contingency

table, where L is a general link function (Lang 2005).

• Important special case is generalized loglinear model

C log(Aµ) = Xβ

for matrices C and A and vector of parameters β.

• This includes ordinal logit models, such as cumulative logit;

e.g., A forms cumulative prob’s and their complements at each

setting of explanatory var’s (each row has 0’s and 1’s), and C

forms contrasts of log prob’s to generate logits (each row

contains 1, −1, and otherwise 0’s).

• Includes models for ordinal odds ratios, such as model where

all global log odds ratios take common value β.

(OrdCDA, Sec. 6.6)

• Another special case has form Aµ = Xβ, which includes

multinomial mean response model that mimics ordinary

regression (scores in each row of A). (OrdCDA, Sec. 5.6)



35

2 Other Ordinal Response Models

a. Models using adjacent-category logits (ACL)
(Sec. 4.1 of OrdCDA)

log[P (yi = j)/P (yi = j + 1)] = αj + β′
xi

• Odds ratio uses adjacent categories, whereas in cumulative

logit model it uses entire response scale (so, interpretations

use local odds ratios instead of cumulative odds ratios)

• Model also has proportional odds structure, for these logits

(effect β same for each cutpoint j)

• Corresponding model for category probabilities is

P (yi = j) =
exp(αj + β

′

xi)

1 +
∑c−1

k=1 exp(αk + β
′

xi)
, j = 1, . . . , c−1
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• Anderson (1984) noted that if

(x | y = j) ∼ N(µj ,Σ)

then

log

[

P (y = j | x)

P (y = j + 1 | x)

]

= αj + β
′

jx

with

βj = Σ
−1(µj − µj+1)

Equally-spaced means imply ACL model holds with same

effects for each logit.

• ACL and cumulative logit models with proportional odds

structure fit well in similar situations and provide similar

substantive results (both imply stochastic orderings of

conditional distributions of y at different predictor values)

• Which to use? Cumulative logit extends inference to underlying

continuum and is invariant with respect to choice of response

categories. ACL gives effects in terms of fixed categories,

which is preferable when want to provide interpretations for

given categories rather than underlying continuum. ACL effects

are estimable with retrospective studies (e.g., case-control).
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Connection with baseline-category logit models

Baseline-category logits (BCL) with baseline c are

log

(

π1

πc

)

, log

(

π2

πc

)

, . . . , log

(

πc−1

πc

)

.

Since

log

(

πj

πc

)

= log

(

πj

πj+1

)

+log

(

πj+1

πj+2

)

+· · ·+log

(

πc−1

πc

)

,

ACL model

log

[

πj(x)

πj+1(x)

]

= αj + β′
x

can be fitted with software for BCL model

log

[

πj(x)

πc(x)

]

=

c−1
∑

k=j

αk + β′(c − j)x

= α∗
j + β′

uj

with adjusted predictor uj = (c − j)x.
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Example: Stem Cell Research and Religious Fundamentalism

Stem Cell Research

Religious Definitely Probably Probably Definitely

Gender Beliefs Fund Fund Not Fund Not Fund

Female Fundamentalist 34 (22%) 67 (43%) 30 (19%) 25 (16%)

Moderate 41 (25%) 83 (52%) 23 (14%) 14 (9%)

Liberal 58 (39%) 63 (43%) 15 (10%) 12 (8%)

Male Fundamentalist 21 (19%) 52 (46%) 24 (21%) 15 (13%)

Moderate 30 (27%) 52 (47%) 18 (16%) 11 (10%)

Liberal 64 (45%) 50 (36%) 16 (11%) 11 (8%)

For gender g (1 = females, 0 = males) and religious beliefs treated

quantitatively with x = (1, 2, 3), ACL model

log(πj/πj+1) = αj + β1x + β2g

is equivalent to BCL model

log(πj/π4) = α∗
j + β1(4 − j)x + β2(4 − j)g
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We set first predictor equal to 3x in equation for log(π1/π4), 2x

in equation for log(π2/π4), and x in equation for log(π3/π4);

e.g., for those liberal on religion (x = 3), values in model matrix for

religion predictor are 9, 6, 3 for each gender.

Values in model matrix for gender are 3, 2, 1 for females and 0, 0, 0

for males.

data stemcell;

input religion scresrch gender count;

datalines;

1 1 0 21

1 1 1 34

1 2 0 52

1 2 1 67

...

3 4 1 12

;

proc catmod order=data; weight count; population religion gender;

model scresrch = (1 0 0 3 0, 0 1 0 2 0, 0 0 1 1 0,

1 0 0 3 3, 0 1 0 2 2, 0 0 1 1 1,

1 0 0 6 0, 0 1 0 4 0, 0 0 1 2 0,

1 0 0 6 3, 0 1 0 4 2, 0 0 1 2 1,

1 0 0 9 0, 0 1 0 6 0, 0 0 1 3 0,

1 0 0 9 3, 0 1 0 6 2, 0 0 1 3 1) / ML NOGLS;

----------------------------------------------------------------------

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

--------------------------------------------------

Model|Mean 4 135.66 <.0001

Likelihood Ratio 13 12.00 0.5279

Effect Parameter Estimate Std. Error Chi-Square Pr > ChiSq

-----------------------------------------------------------------------

Model 1 -0.5001 0.3305 2.29 0.1302

2 0.4508 0.2243 4.04 0.0444

3 -0.1066 0.1647 0.42 0.5178

(RELIGION) 4 0.2668 0.0479 31.07 <.0001

(GENDER) 5 -0.0141 0.0767 0.03 0.8539

-------------------------------------------------------------------------
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• For moderates, estimated odds of (definitely fund) vs. (probably

fund) are exp(0.2668) = 1.31 times estimated odds for

fundamentalists, whereas estimated odds of (definitely fund)

vs. (definitely not fund) are exp[3(0.2668)] = 2.23 times the

estimated odds for fundamentalists, for each gender.

• Ordinal models with trend in location display strongest

association with most extreme categories. e.g., for liberals,

estimated odds of (definitely fund) vs. (definitely not) are

exp[2(3)(0.2668)] = 4.96 times estimated odds for

fundamentalists, for each gender.

• Model describes 18 multinomial probabilities (3 for each

religion×gender combination) using 5 parameters. Deviance

G2 = 12.00, df = 18 − 5 = 13 (P -value = 0.53).

• Similar substantive results with cumulative logit model.

Religious beliefs effect larger (β̂1 = 0.488, SE = 0.080),

since refers to entire response scale. However, statistical

significance similar, with (β̂1/SE) > 5 for each model.
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Connection with ordinal loglinear models

(Sec. 6.2–6.3 OrdCDA)

For contingency tables, ACL models are equivalent to Poisson

loglinear models, called association models, that use

equally-spaced scores for y (Goodman 1979, 1985). e.g., for r × c

table with ordered rows and columns, ACL model for row scores ui,

log[P (y = j + 1)/P (y = j)] = αj + βui

is equivalent to linear-by-linear association model for expected

frequencies {µij = E(nij)},

log µij = λ + λx
i + λy

j + βuivj ,

with {vj = j}. (Find log[µi,j+1/µij ] and simplify)

• Effect β describes local log odds ratios

(uniform association for {ui = i}, {vj = j})

• Related literature for correspondence analysis models and

equivalent canonical correlation models, which use an

association term to model [µij − µij (indep)]

rather than [log µij − log µij (indep)] (Goodman 1986)

• Association models can use alternative measures

(e.g., global odds ratios, Dale 1986, Sec. 6.6 of OrdCDA)
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b. Models using continuation-ratio logits
(Sec. 4.2 of OrdCDA)

log[P (yi = j)/P (yi ≥ j + 1)], j = 1, ..., c − 1, or

log[P (yi = j + 1)/P (yi ≤ j)], j = 1, ..., c − 1

Let ωj = P (y = j | y ≥ j) =
πj

πj+···+πc

Then

log

(

πj

πj+1 + · · · + πc

)

= log[ωj/(1 − ωj)],

• Of interest when a sequential mechanism determines the

response outcome (Tutz 1991) or for grouped survival data

(Prentice and Gloeckler 1978)

• Simple model with proportional odds structure is

logit[ωj(x)] = αj + β
′

x, j = 1, . . . , c − 1,

• More general model logit[ωj(x)] = αj + β
′

jx

has fit equivalent to fit of c − 1 separate binary logit models,

because multinomial factors into binomials,

p(yi1, . . . , yic) = p(yi1)p(yi2 | yi1) · · · p(yic | yi1, . . . , yi,c−1) =

bin[1, yi1; ω1(xi)] · · · bin[1 − yi1 − · · · − yi,c−2, yi,c−1; ωc−1(xi)].
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Example: Tonsil Size and Streptococcus

Tonsil Size

Carrier Not enlarged Enlarged Greatly Enlarged

Yes 19 (26%) 29 (40%) 24 (33%)

No 497 (37%) 560 (42%) 269 (20%)

Let x = whether carrier of Streptococcus pyogenes (1 = yes, 0 = no)

Continuation-ratio logit model fits well (deviance 0.01, df = 1):

log

[

π1

π2 + π3

]

= α1 + βx, log

[

π2

π3

]

= α2 + βx

has β̂ = −0.528 (SE = 0.196). Model estimates an assumed

common value exp(−0.528) = 0.59 for cumulative odds ratio

from first part of model and for local odds ratio from second part.

e.g., given that tonsils were enlarged, for carriers, estimated odds

of response enlarged rather than greatly enlarged were 0.59 times

estimated odds for non-carriers.

By contrast, cumulative logit model estimates

exp(−0.6025) = 0.55 for each cumulative odds ratio, and ACL

model estimates exp(−0.429) = 0.65 for each local odds ratio.

(Both these models also fit well: Deviances 0.30, 0.24, df = 1.)
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-------------------------------------------------------------------------------

data tonsils; * look at data as indep. binomials;

input stratum carrier success failure;

n = success + failure;

datalines;

1 1 19 53

1 0 497 829

2 1 29 24

2 0 560 269

;

proc genmod data=tonsils; class stratum;

model success/n = stratum carrier / dist=binomial link=logit lrci type3;

run;

-----------------------------------------------------------------------

Analysis Of Parameter Estimates

Likelihood Ratio

Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square

Intercept 1 0.7322 0.0729 0.5905 0.8762 100.99

stratum 1 1 -1.2432 0.0907 -1.4220 -1.0662 187.69

stratum 2 0 0.0000 0.0000 0.0000 0.0000 .

carrier 1 -0.5285 0.1979 -0.9218 -0.1444 7.13

LR Statistics For Type 3 Analysis

Chi-

Source DF Square Pr > ChiSq

carrier 1 7.32 0.0068
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Adjacent Categories Logit and Continuation Ratio Logit

Models with Nonproportional Odds

• As in cumulative logit case, model of proportional odds form fits

poorly when there are substantive dispersion effects

• Each model has a more general non-proportional odds form,

the ACL version being

log[P (yi = j)/P (yi = j + 1)] = αj + β′
jxi

• Unlike cumulative logit model, these models do not have

structural problem of out-of-order cumulative probabilities

• Models lose ordinal advantage of parsimony, but effects still

have ordinal nature, unlike BCL models

• Can fit general ACL model with software for BCL model,

converting its {β̂∗
j } estimates to β̂j = β̂∗

j − β̂∗
j+1, since

log

(

πj

πj+1

)

= log

(

πj

πc

)

− log

(

πj+1

πc

)

.
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c. Stereotype model: Multiplicative paired-category
logits
(Sec. 4.3 of OrdCDA)

ACL model with separate effects for each pair of adjacent

categories is equivalent to standard BCL model

log

[

πj

πc

]

= αj + β
′

jx, j = 1, . . . , c − 1.

• Disadvantage: lack of parsimony (treats response as nominal)

• c − 1 parameters for each predictor instead of a single

parameter

• No. parameters large when either c or no. of predictors large

Anderson (1984) proposed alternative model nested between ACL

model with proportional odds structure and the general ACL or BCL

model with separate effects {βj} for each logit.
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Stereotype model :

log

[

πj

πc

]

= αj + φjβ
′

x, j = 1, . . . , c − 1.

• For predictor xk , φjβk represents log odds ratio for

categories j and c for a unit increase in xk . By contrast,

general BCL model has log odds ratio βjk for this effect, which

requires many more parameters

• {φj} are parameters, treated as “scores” for categories of y.

• Like proportional odds models, stereotype model has

advantage of single parameter βk for effect of predictor xk

(for given scores {φj}).

• Stereotype model achieves parsimony by using same scores

for each predictor, which may or may not be realistic.

• Identifiability requires location and scale constraints on {φj},

such as (φ1 = 1, φc = 0) or (φ1 = 0, φc = 1).

• Corresponding model for category probabilities is

P (yi = j) =
exp(αj + φjβ

′

xi)

1 +
∑c−1

k=1 exp(αk + φkβ
′

xi)

• Model is multiplicative in parameters, which makes model

fitting awkward

(gnm add-on function to R fits this and other nonlinear models).
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d. Cumulative Probit Models (Sec. 5.2 of OrdCDA)

Denote cdf of standard normal by Φ.

Cumulative probit model is

Φ−1[P (y ≤ j)] = αj + β′
x, j = 1, . . . , c − 1

e.g., P (y ≤ j) = 1/2 when αj + β′
x = 0

since Φ(0) = 1/2 = P (standard normal r.v. < 0)

As in proportional odds models (logit link), effect β is same for

each cumulative probability.

(Here, not appropriate to call this a “proportional odds” model,

because interpretations do not apply to odds or odds ratios.)
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Properties

• Motivated by underlying normal regression model for latent

variable y∗ with constant σ (WLOG, can set σ = 1).

• Then, coefficient βk of xk has interpretation that a unit

increase in xk corresponds to change in E(y∗) of βk (change

of βk standard deviation, when σ 6= 1), keeping fixed other

predictor values.

• Logistic and normal cdfs having same mean and standard

deviation look similar, so cumulative probit models and

cumulative logit models fit well in similar situations.

• Standard logistic distribution G(y) = ey/(1 + ey) has mean

0 and standard deviation π/
√

3 = 1.8. ML estimates from

cumulative logit models tend to be about 1.6 to 1.8 times ML

estimates from cumulative probit models.

• Quality of fit and statistical significance essentially same for

cumulative probit and cumulative logit models. Both imply

stochastic orderings at different x levels and are designed to

detect location rather than dispersion effects.
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Example: Religious fundamentalism by highest educational

degree (GSS data from 1972 to 2006, huge n)

Religious Beliefs

Highest Degree Fundamentalist Moderate Liberal

Less than high school 4913 (43%) 4684 (41%) 1905 (17%)

High school 8189 (32%) 11196 (44%) 6045 (24%)

Junior college 728 (29%) 1072 (43%) 679 (27%)

Bachelor 1304 (20%) 2800 (43%) 2464 (38%)

Graduate 495 (16%) 1193 (39%) 1369 (45%)

For cumulative link model

link[P (y ≤ j)] = αj + βxi

using scores {xi = i} for highest degree,

β̂ = −0.206 (SE = 0.0045) for probit link

β̂ = −0.345 (SE = 0.0075) for logit link
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-----------------------------------------------------------------------

data religion;

input degree religion count;

datalines;

0 1 4913

0 2 4684

0 3 1905

1 1 8189

1 2 11196

1 3 6045

...

4 3 1369

;

proc logistic; weight count;

model religion = degree / link=probit aggregate scale=none;

----------------------------------------------------------------------

Score Test for the Equal Slopes Assumption

Chi-Square DF Pr > ChiSq

0.2452 1 0.6205

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 48.7072 7 6.9582 <.0001

Pearson 48.9704 7 6.9958 <.0001

Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates

AIC 105532.77 103395.09

SC 105534.19 103397.21

-2 Log L 105528.77 103389.09

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1 -0.2240 0.00799 785.6659 <.0001

Intercept 2 1 0.9400 0.00868 11736.5822 <.0001

degree 1 -0.2059 0.00447 2120.0908 <.0001

-----------------------------------------------------------------------
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• From probit β̂ = −0.206, for category increase in highest

degree, mean of underlying response on religious beliefs

estimated to decrease by 0.21 standard deviations.

• From logit β̂ = −0.345, estimated odds of response in

fundamentalist rather than liberal direction multiply by

exp(−0.345) = 0.71 for each category increase in degree.

e.g., estimated odds of fundamentalist rather than moderate or

liberal for those with less high school education are

1/ exp[4(−0.345)] = 4.0 times estimated odds for those

with graduate degree.

For each category increase in highest degree, mean of

underlying response on religious beliefs estimated to decrease

by 0.345/(π/
√

3) = 0.19 standard deviations.

Goodness of fit?

Cumulative probit: Deviance = 48.7 (df = 7)

Cumulative logit: Deviance = 45.4 (df = 7)

Either link treating education as factor passes goodness-of-fit test,

but fit not practically different than with simpler linear trend model.

e.g., Probit deviance = 5.2, logit deviance = 2.4 (df = 4)

Probit β̂1 = 0.83, β̂2 = 0.56, β̂3 = 0.46, β̂4 = 0.17, β̂5 = 0
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e. Cumulative Log-Log Links (Sec. 5.3 of OrdCDA)

Logit and probit links have symmetric S shape, in sense that

P (y ≤ j) approaches 1.0 at same rate as it approaches 0.0.

Model with complementary log-log link

log{− log[1 − P (y ≤ j)]} = αj + β′
x

approaches 1.0 at faster rate than approaches 0.0. It and

corresponding log-log link,

log{− log[P (y ≤ j)]},

based on underlying skewed distributions (extreme value) with cdf

of form G(y) = exp{− exp[−(y − a)/b]}.

• Model with complementary log-log link has interpretation that

P (y > j | x with xk = x+1) = P (y > j | x with xk = x)exp(βk)

• Most software provides complementary log-log link, but can fit

model with log-log link by reversing order of categories and

using complementary log-log link.
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Example: Life table for gender and race (percent)

Males Females

Life Length White Black White Black

0-20 1.3 2.6 0.9 1.8

20-40 2.8 4.9 1.3 2.4

40-50 3.2 5.6 1.9 3.7

50-65 12.2 20.1 8.0 12.9

Over 65 80.5 66.8 87.9 79.2

Source: 2008 Statistical Abstract of the United States

For gender g (1 = female; 0 = male), race r (1 = black; 0 = white),

and life length y, consider model

log{− log[1 − P (y ≤ j)]} = αj + β1g + β2r

Good fit with this model or a cumulative logit model or a cumulative

probit model
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data lifetab;

input sex $ race $ age count;

datalines;

m w 20 13

f w 20 9

m b 20 26

f b 20 18

m w 40 28

f w 40 13

m b 40 49

f b 40 24

m w 50 32

f w 50 19

m b 50 56

f b 50 37

m w 65 122

f w 65 80

m b 65 201

f b 65 129

m w 100 805

f w 100 879

m b 100 668

f b 100 792

;

proc logistic; weight count; class sex race / param=ref;

model age = sex race / link=cloglog aggregate scale=none;

run;

proc genmod; weight count; class sex race;

model age = sex race / dist=multinomial link=CCLL lrci type3 obstats;

run;

-----------------------------------------------------------------------------

The GENMOD Procedure

Analysis Of Parameter Estimates

Likelihood Ratio

Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square

Intercept1 1 -4.2127 0.1338 -4.4840 -3.9587 991.04

Intercept2 1 -3.1922 0.0911 -3.3741 -3.0168 1226.85

Intercept3 1 -2.5821 0.0764 -2.7340 -2.4347 1143.60

Intercept4 1 -1.5216 0.0623 -1.6458 -1.4015 596.43

sex f 1 -0.5383 0.0703 -0.6769 -0.4011 58.57

sex m 0 0.0000 0.0000 0.0000 0.0000 .

race b 1 0.6107 0.0709 0.4725 0.7506 74.20

race w 0 0.0000 0.0000 0.0000 0.0000 .
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β1 = −0.538, β2 = 0.611

Gender effect:

P (y > j | g = 0, r) = [P (y > j | g = 1, r)]exp(0.538)

Given race, proportion of men living longer than a fixed time equals

proportion for women raised to exp(0.538) = 1.71 power.

Given gender, proportion of blacks living longer than a fixed time

equals proportion for whites raised to exp(0.611) = 1.84 power.

Cumulative logit model has gender effect = −0.604, race effect =

0.685.

If Ω denotes odds of living longer than some fixed time for white

women, then estimated odds of living longer than that time are

exp(−0.604)Ω = 0.55Ω for white men

exp(−0.685)Ω = 0.50Ω for black women

exp(−0.604 − 0.685)Ω = 0.28Ω for black men
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f. Modeling Non-Standard Count Data

• Count responses often have zero inflation

e.g., number of medical appointments a subject had in past

year; some subjects have 0 observation as result of chance,

others because of doctor-avoidance phobia or (in U.S.) cost

and/or lack of medical insurance.

• Models for clustered zero-inflated count data include

(a) hurdle model that uses logistic regression to model whether

an observation is zero or positive and a separate loglinear

model with a truncated distribution for the positive counts

(b) a zero-inflated Poisson model that for each observation

uses a mixture of a Poisson loglinear model and a degenerate

distribution at 0

(c) a zero-inflated negative binomial model that allows

overdispersion relative to the zero-inflated Poisson model.

• Model (a) requires separate parameters for the effects of

explanatory variables in the logistic model and in the loglinear

model.

• Models (b) and (c) require separate parameters for the effects

of explanatory variables on the mixture probability and in the

loglinear model.
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• The models can encounter fitting difficulties if there is

zero-deflation at any settings of explanatory variables.

• When Yt has relatively few distinct count outcomes, simple

alternative approach applies a cumulative logit random effects

model to the count data (Min and Agresti 2005).

• The first category is the zero outcome and each other count

outcome is a separate category

• When large number of count values recorded, collapse into

ordered categories (at least 4 categories to avoid power loss)

• This approach has advantage of single set of parameters for

describing effects. Those parameters describe effects overall,

rather than conditional on a response being positive.
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Modeling Repeated Measures of Zero-Inflated Data

ex. Pharmaceutical study comparing two treatments for a disease

with 118 patients, half randomly allocated to each treatment.

Response = number of episodes of a certain side effect, with this

count observed at six times.

Side Effect Frequencies for Treatment A and Treatment B

Frequencies

Treatment 0 1 2 3 4 5 6

A 312 30 11 0 1 0 0

B 278 39 20 6 7 2 2

Total 590 69 31 6 8 2 2

Complete data and SAS code for various analyses at

www.stat.ufl.edu/∼aa/ordinal/ord.html

Other explanatory variable: time elasped since previous

observation.

Min and Agresti showed strong evidence of zero inflation for

standard models for counts, such as Poisson model with a random

intercept.
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For ordinal approach, group Yt into (0, 1, 2, 3, 4, > 4)

Random effects model: For subject i,

logit[P (Yit ≤ j)] = ui+αj+β1tr+β2 log(time), j = 0, . . . , 4,

where tr is indicator for whether the subject uses treatment A.

From analysis discussed in text (p. 292) with independent random

effects ui ∼ N(0, σ2) integrated out to get likelihood,

β̂1 = 0.977 has SE = 0.431

At each observation time and for a fixed time elapsed since

previous observation, estimated odds that number of side effects

falls below any fixed level with treatment A are

exp(0.977) = 2.66 times estimated odds for treatment B.

Estimate σ̂u = 1.73 (with SE = 0.25) of variability among {ui}
suggests considerable within-subject positive correlation among

the repeated responses.
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Bayesian Ordinal Data Analysis
(Chapter 11 of OrdCDA)

Recall the posterior density function is proportional to the product

of the prior density function with the likelihood function.

Some highlights:

• For multinomial data, Dirichlet distribution serves as conjugate

prior over (π1, . . . , πc) probability simplex. Useful for

smoothing contingency tables (Lindley 1964, Good 1965).

• For 2 × c ordinal table with two independent Dirichlet priors,

Altham (1969) derived expression for posterior probability that

one distribution is stochastically larger than the other. (p. 336

OrdCDA)

• Logistic-normal prior (multivariate normal for vector of logits)

adapts better to ordinality and is more flexible, through, e.g.,

Corr[logit(πa), logit(πb)] = ρ|a−b|

(Leonard 1973, smoothing a histogram)
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Bayesian Approaches with Ordinal Models

• For modeling, in which parameters β are real-valued, using a

multivariate normal prior provides broad scope. Prior is

non-informative when prior σ values large (e.g., 1000).

• Posterior distributions approximated using MCMC methods

(e.g., with software such as WinBUGS), most simply using

methods for normal responses based on latent variable

connections (Albert and Chib 1993, P. Hoff 2009 First Course

in Bayesian Statistical Methods, Ch. 12)

• SAS ver. 9.2 has BAYES option in PROC GENMOD, for

univariate Y (e.g., binomial, Poisson, normal) but not

multinomial. (Sec. 11.3.5, 11.3.6 of OrdCDA)

Can fit (1) continuation-ratio logit model using connection

between multinomial and a product of binomials , (2)

adjacent-categories logit model using connection with Poisson

loglinear model.

• Priors for cumulative logit models should recognize constraint

α1 < α2 < · · · < αc−1. Sec. 11.3.4 of OrdCDA shows ex.,

also summarizing by posterior P (β > 0), P (β < 0). Table

A.8 (p. 353) shows PROC MCMC for Bayesian analysis.
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Example: Tonsil Size and Streptococcus

Tonsil Size

Carrier Not enlarged Enlarged Greatly Enlarged

Yes 19 (26%) 29 (40%) 24 (33%)

No 497 (37%) 560 (42%) 269 (20%)

Continuation-ratio logit model

log

[

π1

π2 + π3

]

= α1 + βx, log

[

π2

π3

]

= α2 + βx

where x = whether carrier of Streptococcus pyogenes

β is a cumulative log odds ratio for the 2×2 table comparing

column 1 to columns 2 and 3 combined (first logit) and a local log

odds ratio for the 2×2 table consisting of columns 2 and 3 (second

logit).

Use normal priors for model parameters with means of 0.

For x, let 0.5 = yes, −0.5 = no (instead of 1 = yes and 0 = no), so

the logit has the same prior variability for each logit.
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-------------------------------------------------------------------------------

data tonsils; * look at data as indep. binomials;

input stratum carrier success failure;

n = success + failure; carrier2 = carrier - 0.5; * symmetrize prior

datalines;

1 1 19 53

1 0 497 829

2 1 29 24

2 0 560 269

;

proc genmod data=tonsils; class stratum; * frequentist analysis;

model success/n = stratum carrier / dist=binomial link=logit lrci type3;

proc genmod data=tonsils; class stratum; * Bayesian analysis;

model success/n = stratum carrier2 / dist=binomial link=logit;

bayes coeffprior=normal initialmle diagnostics=mcerror nmc=2000000;

run; * noninformative, takes prior std dev = 1000 for all parameters;

proc genmod data=tonsils; class stratum; * Bayesian analysis;

model success/n = stratum carrier2 / dist=binomial link=logit;

bayes coeffprior=normal (var=1.0) initialmle diagnostics=mcerror nmc=2000000;

run; *informative, takes prior std dev = 1 for all parameters;

-------------------------------------------------------------------------------

Posterior Estimates of β. Results in ML row are ML estimate, SE, and

95% profile likelihood confidence interval.

Prior Distribution Mean Std Dev 95% Credible Interval

Normal (σ = 1000) −0.533 0.199 (−0.926, −0.146)

Normal (σ = 1.0) −0.518 0.194 (−0.902, −0.141)

ML −0.5285 0.198 (−0.922, −0.144)

Note: HPD credible interval ok for β model parameters, but not sensible for

odds ratios eβ .



65

Summary

• Logistic regression for binary responses extends in various

ways to handle ordinal responses: Use logits for cumulative

probabilities, adjacent-response categories, continuation ratios.

Stereotype model can treat baseline-category logits ordinally.

• Other ordinal multinomial models include cumulative link

models (probit, complementary-log-log), and it can be useful to

handle count data with a multinomial model.

• Which model to use? Apart from certain types of data in which

grouped response models are invalid (e.g., cumulative logits

with case-control data), we may consider (1) how we want to

summarize effects (e.g., cumulative prob’s with cumulative

logit, individual category prob’s with ACL) and (2) do we want a

connection with an underlying latent variable model (natural

with cumulative logit and other cumulative link models)?

• Models extend to multivariate responses using marginal

models and mixed models with random effects (Chap. 8-10).

• Other methods require assigning fixed or midrank scores to

response categories, such as extensions of nonparametric

methods to allow for the ties that occur with ordinal data.
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3 Software for Ordinal Modeling

See OrdCDA appendix for details, and also some details for SPSS

(not covered here).

SAS

• PROC FREQ provides large-sample and small-sample tests of

independence in two-way tables, measures of association and

their estimated SEs, and generalized CMH tests of conditional

independence.

• PROC GENMOD fits multinomial cumulative link models and

Poisson loglinear models , and it can perform GEE analyses for

marginal models as well as Bayesian model fitting for binomial

and Poisson data.

• PROC LOGISTIC fits cumulative link models.

• PROC NLMIXED fits models with random effects and

generalized nonlinear models (e.g., stereotype model).

• PROC CATMOD can fit baseline-category logit models by ML,

and hence adjacent-category logit models.
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R (and S-Plus)

• A detailed discussion of the use of R for models for categorical

data is available on-line in the free manual prepared by Laura

Thompson to accompany Agresti (2002). A link to this manual

is at www.stat.ufl.edu/∼aa/cda/software.html.

• Specialized R functions available from various R libraries. Prof.

Thomas Yee at Univ. of Auckland provides VGAM for vector

generalized linear and additive models

(www.stat.auckland.ac.nz/∼yee/VGAM).

• In VGAM, the vglm function fits wide variety of models.

Possible models include the cumulative logit model (family

function cumulative) with proportional odds or partial

proportional odds or nonproportional odds, cumulative link

models (family function cumulative) with or without common

effects for each cutpoint, adjacent-categories logit models

(family function acat), and continuation-ratio logit models

(family functions cratio and sratio).
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• Many other R functions can fit cumulative logit and other

cumulative link models. Thompson’s manual (p. 121) describes

the polr function from the MASS library. The syntax is simple,

such as
library(MASS)

fit.cum <- polr(y ˜ x, data=tab3.1, method=‘‘probit’’)

summary(fit.cum)

• The package gee contains a function gee for ordinal GEE

analyses. The package geepack contains a function ordgee for

ordinal GEE analyses.

• The package glmmAK contains a function cumlogitRE for using

MCMC to fit cumulative logit models with random effects.

• Can fit nonlinear models such as stereotype model using gnm

add-on function to R by Firth and Turner:

www2.warwick.ac.uk/fac/sci/statistics/staff/research/turner/gnm/

• R function mph.fit prepared by Joe Lang at Univ. of Iowa can fit

many models for contingency tables that are difficult to fit with

ML, such as mean response models, global odds ratio models,

marginal models.
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Stata

• The ologit program (www.stata.com/help.cgi?ologit) fits

cumulative logit models.

• The oprobit program (www.stata.com/help.cgi?oprobit) fits

cumulative probit models.

• Continuation-ratio logit models can be fitted with the ocratio

module (www.stata.com/search.cgi?query=ocratio) and with

the seqlogit module

• The stereotype model can be fitted with the slogit program

(www.stata.com/help.cgi?slogit).

• The GLLAMM module (www.gllamm.org) can fit a very wide

variety of models, including cumulative logit models with

random effects. See www.stata.com/search.cgi?query=gllamm.
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4 Other Work on Modelling Ordinal

Responses

No attempt to be complete; see text notes at end of each chapter of

OrdCDA for more references.

Modelling Association

Association models – Anderson and Vermunt (2000), Becker (1989),

Becker and Clogg (1989), Gilula, Krieger and Ritov (1988), Goodman

(1985), Haberman (1981), Kateri, Ahmad, and Papaioannou (1998),

Rom and Sarkar (1992)

Square contingency tables and extensions – Agresti (1993), Agresti and

Lang (1993), Becker (1990), Dale (1986), Ekholm et al. (2003), Kateri

and Agresti (1997), Kateri and Papaioannou (1997), Sarkar (1989),

Williamson, Kim, and Lipsitz (1995)

Correspondence analysis, correlation models – Beh (1997), Gilula

(1986), Gilula and Ritov (1990), Goodman (1986), Goodman (1996),

Ritov and Gilula (1993)

Modelling Agreement

Latent trait models – e.g., Uebersax and Grove (1993), Yang and Becker

(1997)

Loglinear and association models – Agresti (1988), Becker (1989, 1990),
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Becker and Agresti (1992), Schuster and von Eye (2001), Valet,

Guinot, and Mary (2007)

Random effects – Williamson and Manatunga (1997)

ROC and related methods – Toledano and Gatsonis (1996), Ishwaran

and Gatsonis (2000)

Measures of agreement – Banerjee et al. (1999), Roberts and McNamee

(2005)

Multivariate Models

Marginal models – Heagerty and Zeger (1996), Lipsitz, Kim, and Zhao

(1994), Molenberghs and Lesaffre (1994, 1999), Lang, McDonald, and

Smith (1999), Lumley (1996), Stram, Wei, and Ware (1988), Ten Have,

Landis, and Hartzel (1998)

Random effects models – Ezzet and Whitehead (1991), Hartzel, Agresti,

and Caffo (2001), Hedeker and Gibbons (1994), Tutz and Hennevogl

(1996), Liu and Hedeker (2006), Ten Have et al. (2000), Xie, Simpson,

and Carroll (2000)

Multilevel models – Fielding and Lang (2005), Gibbons and Hedeker

(1997), Grilli and Rampichini (2003, 2007), Steele and Goldstein

(2006), Zaslavsky and Bradlow (1999)

Nonparametric sorts of inference

Inference using rank statistics – Akritas and Brunner (1997), Bathke and
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Brunner (2003), Brunner and Puri (2001, 2002), Rayner and Best

(2001)

Nonparametric random effects – Hartzel, Agresti, and Caffo (2001)

Bayesian Inference

Modelling an ordinal response – Lang (1999), Johnson and Albert (1999),

Hoff (2009, Ch. 12)

Multivariate ordinal responses, hierarchical models – Albert and Chib

(1993, 2001), Bradlow and Zaslavsky (1999), Cowles et al. (1996),

Kaciroti et al. (2006), Qu and Tan (1998)

Association models – Iliopoulos, Kateri, and Ntzoufras (2007), Kateri,

Nicolaou, and Ntzoufras (2005)

Case-control analyses with an ordinal response – Mukherjee et al. (2007,

2008), Mukherjee and Liu (2008)

Small-Sample Inference

Exact tests of independence and conditional independence for ordinal

variables – Agresti, Mehta and Patel (1990 and linear-by-linear option

in StatXact), Kim and Agresti (1997), Agresti and Coull (1998)

Improved tests from a decision-theoretic perspective – Cohen and

Sackrowitz (1991), Berger and Sackrowitz (1997)

Higher-order approximations such as the saddlepoint essentially exact for

single-parameter inference – Pierce and Peters (1992), Agresti, Lang,
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and Mehta (1993)

Goodness of Fit

Chi-squared statistics inappropriate with continuous predictors or highly

sparse data

Generalization of Hosmer-Lemeshow statistic – Lipsitz, Fitzmaurice,

Molenberghs (1996)

For cumulative logit models, can test proportional odds assumption –

Brant (1990), Peterson and Harrell (1990)

Goodness-of-link testing – Genter and Farewell (1985)

Missing Data

Accounting for drop out – Molenberghs, Kenward, and Lesaffre (1997),

Ten Have et al. (2000)

Score test of independence in two-way tables with ordered categories

and extensions for stratified data – Lipsitz and Fitzmaurice (1996)

Comparison of likelihood-based and GEE methods for repeated ordinal

responses – Mark and Gail (1994), Kenward, Lesaffre, and

Molenberghs (1994)

Order-Restricted Inference

Estimate cell proportions (and conduct tests) assuming solely that a type

of ordinal log odds ratio is uniformly nonnegative
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Local odds ratios – Patefield (1982), Dykstra et al. (1995), Agresti and

Coull (1998)

Cumulative odds ratios – Grove (1980), Robertson and Wright (1981),

Cohen and Sackrowitz (1996), Evans et al. (1997)

Order restrictions on parameters in association models – Agresti, Chuang

and Kezouh (1987), Galindo-Garre and Vermunt (2004), Iliopoulos,

Kateri, and Ntzoufras (2007), Ritov and Gilula (1991, 1993)

Marginal modeling – Bartolucci et al. (2001), Bartolucci and Forcina

(2002), Colombi and Forcina (2001)

Detailed references are in Bibliography of OrdCDA.

Other areas not discussed here include other model diagnostics,

smoothing ordinal data (e.g., generalized additive models), paired

preference modeling, survival modeling. Can find some info by looking up

the topic in Subject Index of OrdCDA.
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