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1 Introduction

In many studies data occur in clusters, such as a cluster of repeated measurements for each
subject in a study. One approach to modelling such data includes random effects for the
subjects or clusters in the linear predictor. This provides a mechanism of accounting for
certain correlation structures among the clustered observations and for overdispersion
among discrete responses modelled with ordinary Poisson or binomial models.
When the response has distribution in the exponential family, generalized linear mixed

models (GLMMs) extend generalized linear models (GLMs) to contain random effects. In
GLMMs, the response distribution is defined conditionally on the random effects. The
random effects are commonly assumed to be multivariate normal, although this is not neces-
sary. For instance, an alternative approach uses a conjugate distribution (Lee and Nelder,
1996). With normal random effects the marginal distribution of the response, obtained by
integrating out the random effects, does not have closed form. Numerical integration using
Gauss–Hermite quadrature (e.g., Hinde, 1982; Anderson and Aitkin, 1985) or Monte Carlo
techniques (e.g., Zeger and Karim, 1991; McCulloch, 1994; McCulloch, 1997; Booth and
Hobert, 1999) or approximation methods such as the Laplace approximation and Taylor
series expansions (Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993) are used to
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approximate the marginal distribution and hence the likelihood function and ultimately the
maximum likelihood (ML) estimates and their standard errors.
Numerous articles have developed GLMMs for (conditionally) binomial (e.g., Stiratelli

et al., 1984; Anderson and Aitkin, 1985; Gilmour et al., 1985) and Poisson (e.g., Hinde,
1982; Breslow, 1984) distributed responses. There has been less development for multinomial
responses, with the majority of the research focused on ordinal models with logit and probit
link functions for cumulative probabilities. Harville and Mee (1984) proposed a cumulative
probit random effects model that utilized Taylor series approximations for intractable
integrals. Jansen (1990) and Ezzet and Whitehead (1991) proposed random intercept
cumulative probit and logit models, respectively, and employed quadrature techniques.
More general ordinal random effects models that allowed multiple random effects were
proposed by Hedeker and Gibbons (1994), who applied Gauss–Hermite quadrature within a
Fisher scoring algorithm, and Tutz and Hennevogl (1996), who used quadrature and Monte
Carlo EM algorithms. Other links have received less attention. Ten Have and Uttal (1994)
used a continuation-ratio logit random effects model for analysing multiple discrete time
survival profiles. See also Coull and Agresti (2000) and Dos Santos and Berridge (2000).
Crouchley (1995) developed models with cumulative complementary log-log link using
random effects distributions for which the marginal distribution has closed form. He and
Ten Have (1996) extended a binary random effects model of Conaway (1990) to ordinal
data; a closed-form expression for the likelihood function results from using the cumulative
complementary log-log link and a log-gamma random effects distribution.
The modelling of nominal responses with random effects has received less attention, and

most of that is in the econometric or psychometric literature. A potential application is when
subjects respond to several related multiple choice questions in which the response categories
are unordered or not fully ordered. Item response versions of such a model generalize the
Rasch model (Rasch, 1961; Adams and Wilson, 1996; Adams et al., 1997; Bock, 1972). Bock
(1972) described models more general than most item response models in allowing the
random effects variance to vary across items. An appropriate link function for nominal
responses is the baseline-category logit. Daniels and Gatsonis (1997) used this in a
hierarchical Bayesian model for applications in health services research. Revelt and Train
(1998) introduced random effects in discrete choice models, with random coefficients for the
explanatory variables which, in such models, may themselves vary according to the response
category. For related applications, see Chintagunta et al. (1991), Jain et al. (1994), and
Gönül and Srinivasan (1993).
This article discusses a general approach for logit random effects modelling of clustered

multinomial (ordinal or nominal) responses. Following Tutz and Hennevogl (1996), we
present models as multivariate generalized linear mixed models. Our main purpose is to
survey and unify existing logit random effects models for multicategory responses. In
addition, we extend models and estimation methods. For instance, for ordinal responses we
consider adjacent-categories logit random effects models. These do not seem to have been
considered previously, except in a companion paper (Hartzel et al., 2001) for a particular
application. Also, for nominal responses we extend the baseline-category logit model by
allowing general correlation structure for the random effects.
Our estimation approach extends those considered previously for multinomial data,

both in approximating the likelihood function and in the treatment of the random
effects distribution. To obtain ML estimates, we utilize adaptive Gauss–Hermite quadrature
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(Liu and Pierce, 1994) within a quasi-Newton maximization algorithm. However, this
approach is computationally infeasible when the integral dimension is large. For such cases
we generalize a Monte Carlo EM algorithm proposed by Booth and Hobert (1999). We also
present a generalization of pseudo-likelihood(PL) approaches (Breslow and Clayton, 1993;
Wolfinger and O’Connell, 1993) that are simpler but provide poorer approximations.
Besides the usual normality structure for random effects, we present an approach that

treats random effects in a non-parametric manner. This deals with concerns of bias due to
misspecification of that distribution. We also mention a limited simulation study designed to
investigate effects of such misspecification.
Section 2 defines the general multinomial random effects model and mentions special cases

for nominal and ordinal responses. Section 3 deals with model-fitting, presenting three ways
of approximating the likelihood function, and discusses model inference and prediction.
Section 4 discusses the non-parametric random effects approach. Section 5 illustrates the
adjacent-categories and baseline-category logit link for an example in which several movie
critics reviewed a sample of movies. That section also discusses a connection between
multinomial logit random effects models for within-subjects effects in contingency tables and
corresponding loglinear models.

2 Model specification

Suppose cluster i has Ti categorical observations. Let Yij denote the jth observation in cluster
i, j ¼ 1, . . . ,Ti, with response probabilities f�ijr ¼ PðYij ¼ rÞ, r ¼ 1, . . . ,Rg. Let xij denote a
column vector of explanatory variables for that observation, and let wij denote a column
vector of coefficients for the random effects.

2.1 Logits for nominal responses

When the categories for Yij are unordered, logits pair each response category with an
arbitrary baseline category, say category R. Including cluster-specific random effects uir for
each logit

log
�ijr
�ijR

� �
¼ �r þ x0ij�r þ w0ijuir r ¼ 1, . . . ,R� 1 ð1Þ

is the baseline-category logit random effects model. The parameters �r and �r (and the
random effects) depend on r, since the baseline category is arbitrary; with nominal responses
there is no reason to expect effects to be similar for different r. The model definition is
completed by specifying a distribution for u0i ¼ ðu0i1, . . . , u0i;R�1Þ. The usual random effects
modelling approach treats fuig as independent multivariate normal variates. We recommend
using an arbitrary covariance matrix 6. In particular, it is sensible to allow different
variances for random effects that apply to different logits. With a common variance, that
variance would not be the same as that for the implied random effect for a logit for an
arbitrary pair of categories, logitð�ijr=�ijr0 Þ. With an arbitrary covariance structure the model
is structurally the same regardless of the choice of baseline category.
The website www.uic.edu/	hedeker/mix.html has a FORTRAN program (MIXNO) by

Hedeker for ML fitting of baseline-category logit models with random effects. It uses
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Gauss–Hermite quadrature. See Hedeker (1999) for further details. In contrast to the
general structure in (1) however, this assumes that fuirg are independent for different r or
perfectly correlated. Since the random effects from different logits arise from the same
subject, the assumption that they are independent may be unrealistic. However, to assume
that they are perfectly correlated is too restrictive. Other software that can fit such models
includes HLM (Bryk et al., 2000), MLwiN (Goldstein et al., 1998), and LIMDEP (Greene,
1998). LIMDEP also uses quadrature, whereas the other programs use approximations
(such as Laplace approximations and Taylor series expansions) for the integral that
determines the likelihood function. Unlike quadrature, these methods do not converge to
ML when applied more finely. However, it is feasible to fit more complex models using them.
Chen and Kuo (2001) discussed other software and connections with stratified proportional
hazards models.

2.2 Logits for ordinal responses

A variety of ordinal regression models use the logit link. The most popular one is the
cumulative logit model. A random effects version has form

log
�ij1 þ 
 
 
�ijr

�ij;rþ1 þ 
 
 
 þ �ijR

� �
¼ �r þ x0ij�þ w0ijui r ¼ 1, . . . ,R� 1 ð2Þ

In contrast to model (1), here the fixed effect � is the same for all logits, called the
proportional odds assumption. More general models permit effects �r to vary for different
logits for at least some predictors, but have the structural problem whereby cumulative
probabilities may be misordered. See, for instance, Hedeker and Mermelstein (1998). In
model (2), each logit for the ith cluster also has the same random effect ui. Such
simplifications result naturally from underlying latent variable models with the logistic
distribution. The intercept parameters satisfy �1 < 
 
 
 < �R�1. Tutz and Hennevogl (1996)
considered a more general model that allowed differential random effects uir by logit, as in
the baseline-category logit model. Estimation in this extended model is more complicated,
since the intercepts must be reparameterized to ensure their ordering is not violated.
An alternative ordinal model uses logits, log �ijr=�ij;rþ1

� �
, r ¼ 1, . . . ,R� 1. When this

adjacent-categories logit (ACL) model has the same predictor form as model (2), � has log
odds interpretations for all pairs of adjacent categories. The ACL model is more useful than
the cumulative logit model when one wants descriptions to contrast probabilities of response
in pairs of categories rather than above versus below various points on the response scale.
Since intercepts in the ACL model are unordered, an extended model permitting different
random effects for each logit does not require reparameterization and has the form

log
�ijr

�ij;rþ1

� �
¼ �r þ x0ij�þ w0ijuir r ¼ 1, . . . ,R� 1 ð3Þ

These logits are a basic set equivalent to the baseline-category logits. When � in (3) is
replaced by �r, the ACL model is equivalent to a baseline-category logit model with an
adjusted model matrix. The random effect uir in the baseline-category logit model then
corresponds to uir þ 
 
 
 þ ui;R�1 from the ACL model. Thus, a simple covariance structure
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for the random effects in the ACL model implies a certain pattern for the covariance matrix
for the random effects in the baseline-category logit model.
When the main interest is in estimating the fixed effects rather than characteristics of the

intercept terms, the loss in parsimony in using the more general structure for the intercepts is
usually unimportant. An advantage is that the model may fit much better. A disadvantage is
that having a vector of random effects rather than a single random effect makes model
fitting more challenging.
When used with a common fixed effect � and a common random effect ui for each logit,

ACL and cumulative logit models both specify location effects and imply stochastically
ordered response distributions at different settings of predictors. They then typically provide
similar substantive conclusions.

2.3 Multivariate generalized linear mixed models

Multinomial logit random effects models are a special case of a multivariate generalized
linear mixed model (Tutz and Hennevogl, 1996), denoted by MGLMM. This formulation is
advantageous for several reasons. As with GLMMs, MGLMMs provide a common
framework using a unified notation and estimation method for a broad class of models,
including known formulas for score functions and information matrices. We begin by
defining the MGLMM and then embed the multinomial logit random effects model within
its framework.
Let yij be a multivariate response vector for the jth observation in cluster i, j ¼ 1, . . . ,Ti,

i ¼ 1, . . . , n. With random effects ui, the conditional distribution f ðyij j uiÞ belongs to the
multivariate exponential family with

�ij ¼ Eðyij j uiÞ ¼ hð�ijÞ �ij ¼ Zij�þWijui ð4Þ

where � are fixed effects and Zij andWij are model matrices for the fixed and random effects.
The function hð�ijÞ is a vector of inverse link functions. The fuig are assumed to be
independent from density function gðuÞ, such as the multivariate normal.
A given response may refer to a particular subject, or it may summarize counts for several

subjects having the same random effect. For example, in multi-centre clinical trials regarding
each centre as a cluster, observation j in centre i might refer to the multinomial summary for
the nij subjects using the jth treatment in that centre. Thus, let Y

ðsÞ
ij , s ¼ 1, . . . , nij, represent

nij categorical outcomes for the jth observation of the ith cluster (where nij could equal 1).
To express the multinomial model as a MGLMM, we first re-express each categorical
response as a dummy response vector y

ðsÞ0
ij ¼ ðyðsÞij1 , . . . , y

ðsÞ
ij;R�1Þ where

y
ðsÞ
ijr ¼

1 if Y
ðsÞ
ij ¼ r r ¼ 1, . . . ,R� 1

0 otherwise

(

Thus, for nij independent repetitions, yij ¼
Pnij

s¼1 y
ðsÞ
ij is distributed as multinomial with index

nij and parameters �0
ij ¼ ð�ij1, . . . , �ij;R�1Þ. Then f ð�yyij j uiÞ, where �yyij ¼ yij=nij, is a member of

the multivariate exponential family (Fahrmeir and Tutz, 2001, Chap. 3). The general
multinomial model is defined by (4) in terms of the response vector �yyij. Specific cases result
by specifying the inverse link function hð�ijÞ and the model matrices.
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For example, the baseline-category logit random effects model has

hrð�ijÞ ¼
exp ð�ijrÞ

1þ
PR�1

l¼1 exp ð�ijlÞ
r ¼ 1, . . . ,R� 1

The canonical parameters equated to the linear predictor are log ð�ijr=�ijRÞ, r ¼ 1, . . . ,R� 1.
The fixed effects model matrix is then a ðR� 1Þ-row matrix with non-zero elements

Zij ¼

1 x0ij
1 x0ij

. .
.

1 x0ij

2
6664

3
7775

which are coefficients of �0 ¼ ð�1,�
0
1, . . . ,�R�1,�

0
R�1Þ.

3 Model fitting and inference

We first assume multivariate normality with mean 0 and covariance matrix 6 for u. Denote
this density by gðu;6Þ. The likelihood function for the multinomial model then has the form

Lð�,6Þ ¼
Yn
i¼1

Z1
�1


 
 

Z1
�1

YTi

j¼1

f ð�yyij j ui;�Þ
" #

gðui;6Þ dui ð5Þ

This section describes three approaches for approximating this integral. The first uses
adaptive Gauss–Hermite quadrature. The second is an automated Monte Carlo EM
algorithm that utilizes rejection sampling and estimates the Monte Carlo error to update the
required Monte Carlo sample size. The third is a PL algorithm that utilizes simple Taylor
series approximations.

3.1 Adaptive Gauss–Hermite, quasi-Newton algorithm

When feasible, in our opinion the best method for approximating the multivariate normal
integrals is adaptive Gauss–Hermite quadrature (Liu and Pierce, 1994; Pinheiro and Bates,
1995). This method uses the same weights and nodes as Gauss–Hermite quadrature, but to
increase efficiency it centres the nodes with respect to the mode of the function being
integrated and scales them according to the estimated curvature at the mode. This
dramatically reduces the number of quadrature points needed to approximate the integrals
effectively. Although additional computing time is needed to compute the mode and
curvature for each unique cluster, many fewer quadrature points are needed to obtain the
same degree of accuracy. The number of unique clusters is the biggest factor in determining
the extra amount of time adaptive quadrature requires. So, it is highly efficient for
multinomial response data with categorical covariates, but may be slower for continuous
covariates with large data sets, as the mode and curvature must be calculated for every
cluster for every iteration. If computing time is a problem, we recommend using ordinary
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quadrature to get starting values with few quadrature points, and then use the adaptive
version to improve accuracy.
For cluster i, we first calculate the mode !i of the integrand

QTi

j¼1½ f ð�yyij j ui;�Þ�gðui;6Þ
and centre the original Gauss–Hermite nodes about that point. Scaling the centred nodes
according to the curvature of the integrand around the mode further localizes the quadrature
points near the bulk of the integrand. An estimate of the curvature at the mode of the
integrand results from inverting the negative of the second derivative matrix of the integrand
evaluated at the estimated mode. We used numerical second derivatives for the estimation of
the curvature, Q̂Qi. Let m denote the dimension of ui and denote the original Gauss–Hermite
nodes by zl ¼ ðzl1 , . . . , zlmÞ. Then, the adapted Gauss–Hermite nodes for the ith cluster are

z�i l ¼ !̂!i þ
ffiffiffi
2

p
Q̂Q

1=2
i zl

where Q̂Q
1=2
i results from the Cholesky decomposition of the estimated curvature Q̂Qi.

Using the transformed Gauss–Hermite nodes for each cluster, the contribution to the
likelihood by the ith cluster is approximated by

Lið�,6Þ �jQ̂Q j1=2 2m=2
X
l

wl
YTi

j¼1

f ð�yyij j z�i l;�Þ
" #

gðz�i l;6Þ exp ðz0lzlÞ

where wl ¼
Qm

t¼1 wlt and fwltg are the original Gauss–Hermite weights. Thus, the intractable
integrals are approximated by a finite summation, with each of the m summations taken
over K quadrature points. After approximating the likelihood, one can maximize it using
a variety of methods. We developed a quasi-Newton algorithm using analytical first deri-
vatives of the marginal log-likelihood and numerical second derivatives for estimating the
Hessian matrix. At convergence, we computed and inverted the observed information matrix
to obtain standard error estimates for the estimated model parameters. We recommend
implementing this method by sequentially increasing the number of quadrature points K
until the changes are negligible in both the estimates and standard errors.

3.2 Automated Monte Carlo EM algorithm

Adaptive quadrature with K points in each of m dimensions approximates the integrals with
a finite summation over Km quadrature points. Since the number of nodes increases
exponentially in m, multivariate quadrature is currently computationally feasible only for
integral dimensions up to about 5 or 6. For models with higher-dimensional integrals, more
feasible methods for approximating integrals use Monte Carlo methods. In contrast to
adaptive quadrature, Monte Carlo methods use K randomly sampled nodes z to approxi-
mate integrals. An important issue is then the number of nodes to sample to approximate
adequately the integrals. Using too few nodes can result in a poor approximation to ML
estimates due to Monte Carlo error, while too many nodes can significantly increase the
computational time. Booth and Hobert (1999) proposed an automated Monte Carlo EM
algorithm for estimation in GLMMs. At each iteration they assessed the Monte Carlo error
in the current parameter estimates and increased the number of nodes if the error exceeded
the change in the estimates from the previous iteration. To make this possible, independently
and identically distributed random samples are generated at each iteration, allowing one to
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use standard Central Limit theory to assess the Monte Carlo error. We now outline an
extension of their algorithm that, used with the EM algorithm, provides estimates and
standard errors for multinomial logit random effects models.
The EM algorithm (Dempster et al., 1977) is an iterative method for maximum likelihood

estimation in situations with incomplete data. For MGLMMs, we treat the random effects
u0 ¼ ðu01, . . . , u0nÞ as the missing data and the complete-data log-likelihood as

lCð9Þ ¼ log ffy, u;9g ¼
Xn
i¼1

log
YTi

j¼1

f ð�yyij j ui;�Þ
" #

þ log gðui;6Þ
" #

ð6Þ

where 90 ¼ ð�0,6Þ. In the E (expectation) step at iteration ðsþ 1Þ, the expectation of the
complete log-likelihood (6) is determined with respect to the conditional distribution
hðu j 9; yÞ. That is,

Qð9 j 9ðsÞÞ ¼ Ef log f ðy, u;9Þ j 9ðsÞ; yg

¼
Xn
i¼1

Z

 
 


Z
log

YTi

j¼1

f ð�yyi j j �; uiÞ
" #

þ log gðui;6Þ
" #

hðui j 9ðsÞ; yiÞ dui
ð7Þ

where y0i ¼ ðy0i1, . . . , y0iTi
Þ. One can use Monte Carlo methods to approximate this expecta-

tion by generating samples from hðui j 9ðsÞ; yiÞ. We used the following multivariate rejection
procedure (Geweke, 1996) to select K iid samples z

ðsÞ
il , l ¼ 1, . . . ,K

(a) Sample z
ðsÞ
il from gðui;6ðsÞÞ and independently sample w from the uniform (0,1)

distribution.
(b) Accept if w �

QTi

j¼1 f ð�yyij j �ðsÞ; z
ðsÞ
il Þ=� , where � ¼ supu

QTi

j¼1 f ð�yyij j �ðsÞ; uiÞ; otherwise go
to (a).

To calculate � , one can regard
QTi

j¼1 f ð�yyij j �ðsÞ; uiÞ as the likelihood for a multivariate GLM
with unknown parameter vector ui. Thus, one can find the ML estimate of ui, say ûui, by
fitting such a model that includes an offset of Zij�

ðsÞ, and then calculate
� ¼

QTi

j¼1 f ð�yyij j �ðsÞ; ûuiÞ. Given n sets of K multivariate samples from hðui j 9ðsÞ; yiÞ,
i ¼ 1, . . . , n, the approximation to Qð9 j 9ðsÞÞ is

QKð9 j 9ðsÞÞ ¼ 1

K

Xn
i¼1

XK
l¼1

log
YTi

j¼1

f ð�yyij j �; z
ðsÞ
il Þ

" #
þ log gðzðsÞil ;6Þ

" #
ð8Þ

The M (maximization)-step at iteration ðsþ 1Þ consists of maximizing the Monte Carlo
approximation QKð9 j 9ðsÞÞ in (8) with respect to 9. Since the elements � and 6 of 9 occur
separately in the two terms of (8), the terms can be maximized individually. The first term,
ð1=KÞ

P
i

P
l log ½

Q
j f ð�yyij j �; z

ðsÞ
il Þ�, refers to a likelihood for a multivariate GLM. By

replicating the data vectors yij and xij K times, the linear predictor for the lth multivariate
sample of the jth observation on the ith subject can be expressed as

�ijl ¼ Zijl�þWijlz
ðsÞ
il
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One can maximize with respect to � using Fisher scoring withWijlz
ðsÞ
il as an offset term. The

second term to be maximized in (8) is just the log of a multivariate normal density. For
unstructured covariance matrices or when the random effects are assumed independent,
closed-form solutions exist for the ML estimate of 6.
The approximation of Qð9 j 9ðsÞÞ in (8) inevitably contains Monte Carlo error. This error

propagates through to the M-step, resulting in the estimates for � and 6 only approximating
ML. Reducing the Monte Carlo error by increasing K also increases, of course, the time
needed for the routine to converge. Booth and Hobert (1999) proposed a method for
evaluating the Monte Carlo error in the estimates and automating the choice of K at
each iteration to accurately evaluate the convergence. We adapted their method to this
problem. Upon convergence we used the method of Louis (1982) to obtain estimated
standard errors.

3.3 Pseudo-likelihood algorithm

Both the adaptive quadrature and automated Monte Carlo EM algorithms utilize numerical
integration. Though based on approximations, in principle their estimates can be considered
ML, since one can increase the Monte Carlo sample size or the number of quadrature points
until the desired accuracy is obtained. In contrast, alternative fitting methods provide
approximate ML estimates. Advantages are that they avoid the intractable integrals
completely, thus being computationally much simpler, and they mimic methods for
Gaussian linear mixed models. Articles that have proposed approximate ML estimation in
GLMMs (Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993) have used Taylor
series or Laplace approximations to avoid the intractable integrals. Keen and Engel (1997)
proposed an iteratively re-weighted REML estimation routine for mixed ordinal regression
models. Their method relates to the penalized quasi-likelihood aproach of Breslow and
Clayton (1993). This subsection extends the PL approach of Wolfinger and O’Connell
(1993) to provide approximate ML estimates for multinomial random effects models.
The PL procedure iteratively fits a weighted Gaussian linear mixed model to a modified
response vector.
Related to this, we note that there is not uniformity of opinion that forming (5) is an

appropriate way to proceed with GLMMs. For instance, in generalizing the Henderson
approach for normal mixed models to GLMMs with non-normal response and conjugate
random effects distributions, Lee and Nelder (1996) defined an ‘h-likelihood’ that is a
function of the random and fixed effects. In this and follow-up papers, they argued that
advantages of their approach include avoiding the integration issue, treating the random
effects as fixed but unknown quantities to be estimated like the fixed effects, producing a
generalization of REML for GLMMs, and ready-made checking of the random-effect
distribution. The discussion of Lee and Nelder (1996) provides an interesting debate on these
issues.
To motivate the PL algorithm, we consider the model

�yy ¼ �þ e ð9Þ

for the complete response vector �yy ¼ ½�yyij�, with link function

gð�Þ ¼ Z�þWu
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where u0 ¼ ðu01, . . . , u0nÞ with ui being N(0, 6), i ¼ 1, . . . , n, and e0 ¼ ðe011, . . . , e0ij, . . . , e0nTn
Þ

have Eðeij j �ijÞ ¼ 0 and covðeij j �ijÞ ¼ R1=2
�ij
RR1=2

�ij
. For the multinomial models,

R�ij
¼ ½diagð�ijÞ � �ij�

0
ij�=nij, and following Wolfinger and O’Connell (1993) the covariance

matrix R allows modelling of population-averaged associations. For the complete data
model, we define covðuÞ ¼ 6c and covðe j �Þ ¼ R1=2

� R
cR1=2

� . First, for known estimates �̂�
and ûu, let

�̂� ¼ hð�̂�Þ ¼ hðZ�̂�þWûuÞ

where hð
Þ is the inverse link for the desired model. Then, a Taylor series approximation to
the residuals e ¼ �yy� � from (9) about the current estimates �̂� and ûu is given by

e � ~ee ¼ ð�yy� �̂�Þ � ð�� �̂�Þ0 dð�yy� �̂�Þ
d�

¼ ð�yy� �̂�Þ � ðZ�� Z�̂�þWu�WûuÞ0D
ð10Þ

where D is block diagonal with elements Dij ¼ dh=d� that depend on the model. Next, we
approximate the conditional distribution of (~ee j �, u) in (10) with a Gaussian distribution
that has the same first two moments as (e j �, u). Thus, we assume that

ð~ee j �, uÞ 	 Nð0, R1=2
� Rc R1=2

� Þ ð11Þ

Then, using (10), (11), and approximating � in R1=2
� Rc R1=2

� with �̂�, we obtain

D�10 ð�yy� �̂�Þ 	 MVN½Z�� Z�̂�þWu�Wûu, D�1R
1=2
�̂� R

cR
1=2
�̂� D�10 � ð12Þ

It follows from (12) that the approximate ‘pseudo’ observation vector,

�yy ¼ gð�̂�Þ þD�10 ð�yy� �̂�Þ ð13Þ

has the approximate conditional distribution

ð�yy j �, uÞ 	 N½Z�þWu, D�1 R
1=2
�̂� Rc R

1=2
�̂� D�10 � ð14Þ

Now, (14) has the form of a weighted linear mixed model with response �yy and weight matrix
ŴW ¼ D0 R�1

�̂� D.
The log-likelihood corresponding to (14) is easily obtained. Following Wolfinger and

O’Connell (1993), we insert an additional dispersion parameter � and re-express the
covariance matrices 6c and Rc as 6c� ¼ ��16c and Rc� ¼ ��1Rc. The dispersion parameter
is analogous to that used in quasi-likelihoods and can be equated to 1.0 if not needed. The
resulting log-likelihood is

lð�,�,6c�,Rc�Þ ¼ � 1

2
log j �V j � 1

2
��1ð�yy� Z�Þ0V�1ð�yy� Z�Þ � n

2
log ð2�Þ ð15Þ

where

V ¼ W�1=2Rc�W�1=2 þW6c�W0 ð16Þ
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Closed-form solutions for � and � that maximize (15) exist and are given by

�̂� ¼ ðZ0V̂V�1ZÞ�1
ZV̂V�1�yy ð17Þ

and

�̂� ¼ 1

n� p
r̂r0V̂V�1r̂r ð18Þ

where r̂r ¼ �yy� ZðZ0 V̂V�1ZÞ�1
Z0 V̂V�1 �yy. To obtain the estimates of 6c� and Rc� in V̂V, the

restricted profile likelihood

lRð6c�,Rc�Þ ¼ � 1
2 log j V j � n� p

2
log ðr0V�1rÞ � 1

2 log j Z0V�1Z j

� n� p

2
f1þ log ½2�=ðn� pÞ�g

can be maximized, providing REML-like estimates for 6c� and Rc�. An estimate of u can
then be found from ûu ¼ 6̂6c�W0 V̂V�1r̂r. The PL algorithm consists of iteratively estimating �
and u, and 6c and Rc, until convergence. Upon convergence, an estimate of the approximate
covariance matrix for �̂� and ûu results from inverting

Z0ŴW1=2R̂Rc�1ŴW1=2Z Z0ŴW1=2R̂Rc�1ŴW1=2W

W0ŴW1=2R̂Rc�1ŴW1=2Z W0ŴW1=2R̂Rc�1ŴW1=2Wþ 6̂6c�1

� �

PL algorithms are fast, since they avoid numerical integration. With GLMMs, however,
these methods have been shown to be biased for highly non-normal cases, such as Bernoulli
response data (Breslow and Clayton, 1993; Engel, 1998), with the bias increasing as variance
components increase. We suspect that similar problems exist for the multinomial random
effects models, both for estimating regression coefficients and variance components, when
the multinomial sample sizes are small. Further research is needed to investigate the
accuracy of the approximate methods for multinomial models. At the very least, their speed
suggests these approximate methods can provide starting values for the ML algorithms
considered previously and can be used in large-scale exploratory analyses.

3.4 Inference and prediction

Besides estimating parameters, one might also conduct inference about the parameters or
obtain predictions for the random effects. One can conduct tests of the fixed effect
parameters using the usual ML inferential techniques such as likelihood-ratio tests. Testing
of variance components for the random effects is not straightforward. The likelihood-
ratio statistic for testing that a single variance component is zero has null distribution
that is approximately an equal mixture of degenerate at 0 and chi-squared on 1 df (Self and
Liang, 1987). Score tests have ordinary chi-squared limiting distributions (Lin, 1997), but
their performance for small to moderate samples with multivariate models is uncertain.
Prediction of the random effects ui, i ¼ 1, . . . , n, or linear combinations of fixed and

random effects is based on the conditional expectation of ui given the data and the final
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parameter estimates. For multinomial random effects models, this expectation has the form

E ½ui j yi, �̂�, 6̂6� ¼
R

 
 


R
ui½

QTi

j¼1 f ðyij j �̂�; uiÞ� gðui; �̂�Þ duiR

 
 


R
½
QTi

j¼1 f ðyij j �̂�; uiÞ� gðui; �̂�Þ dui

and requires integral approximations, for instance using adaptive Gauss–Hermite
quadrature or Monte Carlo integration. Although the expectation involves only the data
for cluster i, the estimates of fuig borrow information from all the clusters since �̂� and 6̂6 are
obtained using all the data.

4 Model fitting: a semi-parametric approach

Advantages of the multivariate normality assumption for random effects include a variety of
covariance structures and connections with Gaussian linear mixed models. An obvious
concern of making this assumption is the unknown effect of misspecification of the random
effects distribution. Some work exists on investigating these effects. Examining models for
censored longitudinal economic data, Heckman and Singer (1984) showed that estimates
of fixed parameters in a particular Weibull regression model were highly sensitive to
misspecification. Less dramatic evidence occurs for other types of models (Davies, 1987;
Neuhaus et al., 1992; Butler and Louis, 1992). In light of this evidence, some recent work has
focused on non-parametric approaches (Heckman and Singer, 1984; Davies, 1987; Wood
and Hinde, 1987; Follmann and Lambert, 1989; Butler and Louis, 1992; Wedel and
DeSarbo, 1995; Aitkin, 1996; Aitkin, 1999). A referee has pointed out to us that this work
has connections with a semi-parametric approach to estimation in the psychometric
literature on latent trait and latent class models. See Heinen (1996, Chap. 6) for discussion.
This section considers a semi-parametric approach we have used with the ordinal random

effects models. We outline an EM algorithm for obtaining non-parametric ML (NPML)
estimates that generalizes Aitkin (1999), where the ‘non-parametric’ label here refers only to
the lack of assumption about the random effects distribution. We refer to the full modelling
approach as semi-parametric rather than non-parametric, since basic models have the same
multinomial form as in the fully parametric case and since the non-parametric part of the
analysis involves estimating its own parameters for the random effects distribution (namely,
mass points and their probabilities). Like the approximate ML solutions in the previous
section, it avoids the need for numerical integration.

4.1 NPML EM algorithm

For ease of notation, we develop the NPML EM algorithm for models with a single random
effect, such as simple random intercept models. We assume that gðuÞ is a discrete probability
mass function with unknown finite support size K, mass points m0 ¼ ðm1, . . . ,mKÞ, and
probabilities p0 ¼ ðp1, . . . , pKÞ. For fixed K, the complete log-likelihood is

logLðy, u;�Þ ¼
Xn
i¼1

log
YTi

j¼1

f ðyij j ui;�Þ
" #

þ
Xn
i¼1

log gðuiÞ ð19Þ

where y and u denote the complete observed and unobserved data.
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In the E-step at iteration ðsþ 1Þ, the expectation of the complete log-likelihood (19) is
calculated with respect to f ðu j y,�ðsÞ,mðsÞ, pðsÞÞ, where (�ðsÞ,mðsÞ, pðsÞ) are estimates from the
previous iteration. Using independence and Bayes Rule

E ½ logLð�,m, p j �ðsÞ,mðsÞ, pðsÞÞ�

¼
Xn
i¼1

XK
k¼1

log f ð~yyi j mk,�Þ þ log pk½ � pðsÞk f ð~yyi j m
ðsÞ
k ,�ðsÞÞPK

l¼1 p
ðsÞ
l f ð~yyi j m

ðsÞ
l ,�ðsÞÞ

¼
Xn
i¼1

XK
k¼1

½�ðsÞ
ik log f ð~yyi j mk,�Þ þ �

ðsÞ
ik log pk� ð20Þ

where

�
ðsÞ
ik ¼ p

ðsÞ
k f ð~yyi j m

ðsÞ
k ,�ðsÞÞPK

l¼1 p
ðsÞ
l f ð~yyi j m

ðsÞ
l ,�ðsÞÞ

represents the estimated posterior probability that the response vector ðy0i1, . . . , y0iTi
Þ for

cluster i comes from component k.
The M-step consists of maximizing (20) with respect to �, m, and p. The second term on

the right of (20) is not a function of � or m and can be maximized separately from the first
term, yielding p̂p

ðsÞ
k ¼

Pn
i¼1 �

ðsÞ
ik =n. Since f�

ðsÞ
ik g are known, the first term on the right of (20) is

the log-likelihood of a weighted multivariate GLM with known weights. Wood and Hinde
(1987) noted that fmkg can be estimated by incorporating a K-level factor in the model in
place of mk. By adjusting the model and response matrices accordingly, one can maximize
the weighted multivariate GLM using a Fisher scoring algorithm. The E-step and the M-step
are then iterated until convergence in the parameter estimates and the deviance. To
determine K, we recommend successively fitting the NPML EM algorithm while increasing
K until no further improvement in the deviance is obtained. Usually K is quite small and the
estimate of the true mixture distribution may be quite poor. Some find this unappealing and
prefer a smooth mixing density (Davidian and Gallant, 1993). Based on simulation results
summarized later in the paper, it appears that the poor estimation of the mixture distribution
does not cause problems with estimating the fixed effects. Thus, based on our experience it
seems to us that this approach is usually reasonable when main interest focuses on the fixed
effects rather than the mixture distribution itself.
Upon convergence, the inverse of the observed information matrix provides standard

errors for the parameter estimates (Hartzel, 1999). For starting values for the mass points
and their probabilities, we used the nodes and weights from Gauss–Hermite quadrature.
However, it is advisable to try a few sets of starting values. As noted by Wood and Hinde
(1987) and from our own experience, the estimated mixing distribution can place positive
probability at �1. We have observed this with ordinal models when observations in many
clusters all have response in the highest category or all in the lowest category. Thus,
routinely we also fit the model with mass points at �1 (as in Wood and Hinde, 1987) and
evaluate the log-likelihood. (For an ordinal model with random intercept, a mass point at
þ1 (�1) corresponds to a probability of 1 that the response falls at the lowest (highest)
level. The fitting of models with such mass points therefore amounts to putting conditions in
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the code that ignores covariates and sets the multinomial likelihood to one or zero when the
random effect is at �1.) When the ML fit has such mass points, in our experience this does
not affect estimates of � or their standard errors in the ordinal models (2) and (3), but not
surprisingly it does affect estimates of intercept parameters.

4.2 Inference and prediction

Ideally, the asymptotic inferential theory for the estimation of fixed effects would parallel the
standard ML theory, but such theory is lacking. The difficulty arises partly from the
unknown mixture support size K for a model or for each of two models to be compared.
This implies the dimension of the parameter vector is unknown. Despite this, recommenda-
tions have relied on standard ML theory. For instance, the likelihood-ratio test has been
used for testing fixed parameters and making model comparisons (Davies, 1987; Wood and
Hinde, 1987; Aitkin, 1996). Hartzel (1999) examined the Wald and likelihood-ratio tests for
multinomial logit random effects models and concluded that they provided reasonably
appropriate inference for the NPML approach.
Work is also needed on inferences about the mixture distribution g. For instance, one

might want to compare a model to one not containing the random effect. This entails testing
that the masses are on the boundary of the parameter space, which precludes the use of the
likelihood-ratio test. The same comment applies to comparing NPML fits with different
numbers of mass points.
A final issue is model identifiability. A given mixture is identifiable if it is uniquely

characterized in the sense that two distinct sets of parameters defining the mixture cannot
yield the same distribution. Teicher (1963) and Teicher (1967) provided conditions under
which mixtures of binomial distributions are identifiable. Follmann and Lambert (1991)
extended this to mixtures of logistic regression models with random intercepts. Butler and
Louis (1997) considered a latent linear model for binary data with any class of mixing
distribution and provided sufficient conditions for identifiability of the fixed effects and
mixing distribution. As in the binary case, not all mixtures of multinomial models are
identifiable. Hartzel (1999) provided sufficient conditions for the identifiability of
overdispersed multinomial regression models; however, further work is needed for the more
general multinomial random effects model considered here.

4.3 Effect of choice of random effect distribution

Having mentioned the advantage the semi-parametric approach has of avoiding potential
misspecification of the random effects distribution brings up the issue of potential bias in
parameter estimation with a misspecified parametric approach. Some research has studied
the robustness of the parametric approach under different random effects distributions
(Neuhaus et al., 1992; Butler and Louis, 1992). These studies concentrated on binary logistic
regression and indicated that the parametric ML approach was robust to misspecification of
the mixing distribution in terms of estimating fixed effects but less so in estimating the
mixing distribution and its characteristics.
We conducted a limited simulation study to compare NPML to parametric ML

approaches in terms of the bias between the two approaches for a single covariate, random
intercept ordinal logit model using a variety of different random effects distributions. We
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generated clustered response data according to a cumulative logit model

logitð�ij1 þ 
 
 
 þ �ijrÞ ¼ �r þ 	 xij þ ui r ¼ 1, . . . ,R� 1 ð21Þ

where R ¼ 3, i ¼ 1, . . . , 100, and j ¼ 1, 
 
 
 ,T for T ¼ 4 or 7. For all simulations, fxijg were
generated from the standard normal distribution, and ð�1,�2, 	Þ ¼ ð�1, 1, 0:5Þ. We let ui be
Nð0, 0:5Þ, Expð1Þ, Uð�0:5, 0:5Þ, discrete with mass points (�0:5, 0:5) and masses (0.5, 0.5), or
degenerate. For each case except the last, the random effect was standardized to have mean 0
and variance 0.5. For each combination, we simulated 500 datasets (this number reflecting
computational constraints) and fit them with both the NPML algorithm and the adaptive
quadrature algorithm.
As in Neuhaus et al. (1992), we observed only small estimated bias for the parametric ML

estimation of 	, even when the mixture distribution was very skewed. The largest estimated
biases could be explained by Monte Carlo error. They corresponded to a percent bias of
approximately 2.5%, which is similar to values Neuhaus et al. (1992) reported. For
estimation of the intercept parameters, the largest estimated biases were only on the order of
2%. The parametric approach provided accurate estimates of the variance component �2

with a normal random effect. Considerable bias occurred for the remaining distributions,
however. In general, larger estimated biases were found with a smaller cluster size.
For the semi-parametric approach, the estimated bias for 	 was similar to the parametric

approach. This held even when simulated datasets had estimated mass points at �1.
Estimation of the intercept parameters and the variance component was much less accurate,
because these parameters are related to the mass points. As others have cautioned, one
should not trust estimates that are functions of the mixing distribution estimates.
For each distribution for the random effects, standard errors of the fixed effect estimate

were very similar for the parametric and semi-parametric approaches. In addition, for both
approaches there was good agreement between the mean of the model-based estimated
standard errors (using the observed information matrix for each model fit) and the estimated
standard error based on the set of Monte Carlo simulations.
Conclusions from these simulations are tentative, because of their limited scope. They

suggest that parametric and semi-parametric approaches produce essentially unbiased
estimates of 	, with similar behaviour under the various random effects distributions and
cluster sizes. For estimation of the remaining parameters, the parametric approach seems
more reliable, although it also had some difficulties when the random effects distribution
was extremely skewed. We are currently conducting a more thorough simulation study of the
effect of misspecification of the random effects distribution in generalized linear mixed
models. A referee has suggested also including a covariate that varies only with i, and this is
one design we plan to use in this study.

5 Movie critics example

Each week Variety magazine, in an article titled Crix’ Picks, summarizes reviews of new
movies by several critics. Each review is categorized as Pro (positive), Con (negative), or
Mixed (a mixture of the two). Table 1 summarizes reviews of 93 movies from April, 1995
through March, 1997 by four critics. We compare the reviewers’ ratings using multinomial
logit models with random intercepts. Let �ijr denote the probability that the rating of movie
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i by critic j (1¼ Siskel, 2¼Ebert, 3¼Lyons, 4¼Medved) falls in category r. We obtained
ML estimates using adaptive Gauss–Hermite quadrature. Reported estimates are based on
50 quadrature points, but most estimates and standard errors stabilized to the third decimal
place after 10 points.

5.1 Parametric random effects

An ACL model is

log
�ijr

�ij;rþ1

� �
¼ �r þ 	j þ uir r ¼ 1, 2 ð22Þ

where fuirg are iid. For identifiability, we take 	4 = 0. Table 2 (in column 3 of the 7 models)
shows f	̂	jg assuming multivariate normality for ðui1, ui2Þ with unspecified correlation
and possibly different variances. Compared with Medved, all effects are positive, reflecting
greater tendency for the other critic to have rating in the more positive category. For
instance, for a given movie the estimated odds that Siskel’s rating was pro instead of mixed,
or mixed instead of con, are exp ð0:52Þ ¼ 1:7 times the corresponding odds for Medved.
Table 2 also shows in columns 4 and 6 estimates for the simpler random effects structure
uir ¼ ui

(i) assuming a normal distribution for fuig
(ii) assuming � ¼ 0, in which case the four responses are mutually independent.

The f	̂	jg are similar except when � ¼ 0; they are then smaller, as they correspond to
population-averaged estimates.
Table 2 also shows likelihood-ratio goodness-of-fit statistics comparing counts to their

fitted values. The G2 statistics are only rough indicators because of the sparseness. A cell-
wise residual analysis indicates model (22) fits reasonably well, but a model discussed below
indicates there is some lack of fit. In the parametric case, the more complex random effects
structure provides a better fit, but does not provide substantively different results about the
fixed effects.

Table 1 Ratings of movies by four movie critics

Lyons Siskel Medved¼Pro Medved¼Mixed Medved¼Con

Ebert rating

Pro Mixed Con Pro Mixed Con Pro Mixed Con

Pro Pro 15 2 0 2 0 0 8 0 2
Mixed 0 3 0 2 3 0 3 2 1
Con 1 0 1 1 2 1 1 1 2

Mixed Pro 2 0 0 2 1 0 0 1 0
Mixed 1 1 0 0 1 0 0 1 0
Con 1 0 0 0 0 0 0 1 1

Con Pro 3 1 1 0 0 0 4 1 0
Mixed 0 0 1 0 0 0 1 3 0
Con 0 0 1 2 1 0 2 2 4

Source: Data taken from Variety, April, 1995 through March, 1997 (thanks to Larry Winner for providing this).
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A baseline-category logit model for Table 1 is

log
�ijr

�ij3

� �
¼ �r þ 	jr þ uir r ¼ 1, 2 ð23Þ

with 	4r ¼ 0 for each r and unstructured covariance matrix for (ui1, ui2). This corresponds to
an ACL model with differing rater effects for each logit

log
�ijr

�ij;rþ1

� �
¼ ��

r þ 	�
jr þ uir r ¼ 1, 2 ð24Þ

where 	�
j1 ¼ 	j1 � 	jþ1;2 and 	�

j2 ¼ 	j2 and again the covariance matrix is unstructured.
Fitting the model in this form makes it easier to detect ways in which model (22) with
common effect for each logit may have lack of fit. Table 2 (in column 1) showing ML
estimates for this model provides evidence of heterogeneity in the effects. The estimates show
a negligible effect comparing Siskel and Ebert to Medved for the pro versus mixed
comparison and a negligible effect comparing Lyons to Medved for the mixed versus con
comparison. The model has a reduction in G2 of 8.6 (df ¼ 3) compared to the simpler ACL
model. None of the cell-specific residuals indicated problems with lack of fit. Results are
substantively similar for the model with zero correlation between the random effects (in
column 2).

5.2 Semi-parametric random effects approaches

Column 5 of Table 2 shows results using a non-parametric treatment of fuig. Estimates f	̂	jg
are very similar to those in Column 4 for the corresponding model with normal random
effects. For the semi-parametric approach, Table 3 shows how the estimates and standard
errors change as the number of mass points increases. Since infinite mass points occur for

Table 2 ML estimates for ACL random effects model (24) with different logit effects 	�
jr and model (22) with common

effects 	j for movie critics

Effect Model

(24)* (24)*
Corr¼ 0

(22) (22)
uir¼ui

(22)
uir¼ui

nonpar

(22)
uir¼0
(�¼0)

(25)
ord. quasi
symmetry

	1 (Siskel) 0.095, 0.965 0.144, 0.958 0.519 0.520 0.526 0.381 0.522
se 0.439, 0.460 0.427, 0.450 0.201 0.201 0.203 0.170 0.203
	2 (Ebert) 0.081, 1.806 0.163, 1.790 0.854 0.854 0.860 0.630 0.855
se 0.433, 0.499 0.418, 0.489 0.213 0.212 0.214 0.176 0.214
	3 (Lyons) 1.002, 0.194 1.002, 0.246 0.640 0.641 0.647 0.471 0.643
se 0.477, 0.493 0.466, 0.481 0.205 0.205 0.206 0.172 0.206

SD(ui1) 1.41 1.24 1.40 0.80 1
SD(ui2) 1.45 1.27 1.31 – –
Corr(ui1, ui2) �0.39 0.0 �0.34 – –

G2 72.0 72.7 80.6 90.8 86.6 118.9 73.4
df 69 70 72 74 69 75 63

*First estimate and standard error refers to effect 	�
j1 for log (�ij1 /�ij2), and second to effect 	�

j2 for log (�ij2 /�ij3).
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some K, we set �̂�1 ¼ 0 and impose no restriction on the mass points. With K ¼ 1, the model
is equivalent to the parametric model with � ¼ 0. The model with K ¼ 2 provides a
substantial improvement in fit. With K ¼ 3, an infinite mass point occurs, having probability
0.12. The log likelihood is essentially constant (to the fifth decimal place) when the third
mass point exceeds roughly 15. That mass point forces at least 12% of the joint distribution
in the cell whereby each critic’s rating is pro (16% of the sample is in that cell). With K ¼ 4,
there is also a small mass at �1, forcing at least 2% of the joint distribution in the cell
whereby each critic’s rating is con (4% of the sample is in that cell). The fit with K ¼ 4 is the
ML fit, as allowing K ¼ 5 gives essentially the same fit and only four distinct mass points.
An interesting connection exists between a loglinear model and a semi-parametric

approach with ACL random effects models for within-subjects effects. We illustrate with
model (22) for the movie critic data. Let fnðr1, r2, r3, r4Þg denote the cell counts in Table 1,
and let �ðr1, r2, r3, r4Þ ¼ E½nðr1, r2, r3, r4Þ� denote the expected frequency for response rj by
critic j, j ¼ 1, . . . , 4. It follows from Agresti (1993) that regardless of the random effects
distribution in the ACL model (22), f�ðr1, r2, r3, r4Þg satisfy the loglinear model

log�ðr1, r2, r3, r4Þ ¼ 	1r1 þ 	2r2 þ 	3r3 þ 
ðr1, r2, r3, r4Þ ð25Þ

where 
ðr1, r2, r3, r4Þ is permutation invariant. When model (22) holds, fitting this loglinear
model provides another semi-parametric way to estimate consistently f	jg. Table 2 also
shows results for it. The ML estimates for the random effects models and the loglinear
model are similar, approximately 	̂	1 ¼ 0:52, 	̂	2 ¼ 0:85, 	̂	3 ¼ 0:64. Again, an advantage is the
lack of assumption about the parametric form for the random effects distribution. A
disadvantage is the lack of information provided about their variability. In fact, the loglinear
f	̂	jg are necessarily identical to the conditional ML estimates from treating fuijg as fixed
effects and conditioning on their sufficient statistics.
Model (25) is a special case of the loglinear quasi-symmetry model, having a symmetric

interaction term but allowing heterogeneous main effects. The ordinary quasi-symmetry

Table 3 Estimates of critic effects for ACL model with non-parametric random effects applied to Table 1

Number of mass points

1 2 3 4 5

Log-likelihood �379.5 �366.6 �363.7 �363.4 �363.4

	1 (Siskel) 0.381 0.508 0.522 0.526 0.526
se 0.170 0.199 0.202 0.203 0.203
	2 (Ebert) 0.630 0.828 0.854 0.860 0.860
se 0.176 0.208 0.212 0.214 0.214
	3 (Lyons) 0.471 0.625 0.654 0.647 0.647
se 0.172 0.201 0.205 0.206 0.206
G2 118.9 93.0 87.3 86.6 86.6
df 75 73 71 69 69

Mass 1, prob 0.427, 1 �0.474, 0.487 �1.070, 0.201 �1, 0.024 �1, 0.024
Mass 2, prob �0.833, 0.512 �0.150, 0.677 �0.704, 0.277 �0.704, 0.277
Mass 3, prob þ1, 0.122 �0.223, 0.581 �0.223, 0.395
Mass 4, prob þ1, 0.118 �0.223, 0.186
Mass 5, prob þ1, 0.118
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model treats the response as nominal, but model (25) treats it as ordinal by using main
effects that are quantitative variates instead of qualitative factors. Similar connections exist
between baseline-category logit random effects models and ordinary quasi-symmetry
models, see Conaway (1989). This more general model has G2 ¼ 63:3, df ¼ 60, showing
some improvement over model (25). For the parametric random effects modelling or
loglinear modelling, allowing differing effects for each logit reduces the deviance by about 10
on df ¼ 3.

6 Final comments

The semi-parametric approach to fitting multinomial logit random effects models has several
unresolved issues. Based on the simulation results mentioned in Section 4.3, one might
consider always using the normal parametric approach. Indeed, we have not observed cases
in which the semi-parametric approach provided substantively different results. Therefore,
we view the NPML approach mainly as a type of check for normal random effects
modelling; if one obtains different results, it suggests further investigation into the model
adequacy.
Part of the work for the thesis on which this paper is based (Hartzel, 1999) developed

programs for fitting multinomial logit random effects models with the three strategies
discussed in Section 3 and the semi-parametric approach. Recently, the SAS procedure
NLMIXED has become available for ML fitting of GLMMs. Use of SAS for fitting the
parametric random effects models to Table 1 is shown on the journal’s webpage for this
article (http://stat.uibk.ac.at/SMIJ).
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