PSYCHOMETRIKA—VOL. 44, NO, 1.
MARCH, 1979

EXACT CONDITIONAL TESTS FOR CROSS-CLASSIFICATIONS:
APPROXIMATION OF ATTAINED SIGNIFICANCE LEVELS

ALAN AGRESTI, DENNIS WACKERLY, AND JAMES M. BOYETT

UNIVERSITY OF FLORIDA

A procedure is proposed for approximating attained significance levels of exact conditional
tests. The procedure utilizes a sampling from the null distribution of tables having the same
marginal frequencies as the observed table, Application of the approximation through a computer
subroutine yields precise approximations for practically any table dimensions and sample size.
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1. Introduction

Several recent articles have outlined methodologies for exact conditional analyses of
data which are summarized in an » X ¢ matrix of counts. Depending upon the purposes of
the experimenter, several types of null and alternative hypotheses are appropriate. Some
of the procedures [Agresti & Wackerly, 1977; Freeman & Halton, 1951] test for independ-
ence between two variables, while others [Klotz & Teng, 1977] are designed to compare
several treatments with respect to observed responses on an ordinal categorical variable.
Extentions of Fisher’s [1971] now famous experiments involving the tea-tasting lady have
also been considered [Wackerly, Mc¢Clave & Rao, 1978].

When testing the null hypothesis of independence of two variables in a cross-
classification table, various types of alternative hypotheses may be appropriate. For
example, if the two variables are measured on a strictly nominal scale, we might be
interested in the broad alternative of “statistical dependence”. A natural test statistic in
that case is the standard chi-square statistic or a nominal measure of association such as
Goodman and Kruskal’s lambda or tau, Alternately, if both variables are ordinal cate-
gorical, we might wish to detect whether there is a monotonic relationship between the
variables. In that case we might use the alternative hypothesis that the proportion of
concordant pairs of observations is unequal to the proportion of discordant pairs, and
employ Kendall’s tau-b as the test statistic. In the case of comparing several treatments on
an ordinal categorical variable, the null hypothesis of independence corresponds to
homogeneity of the treatments. We might then wish to use a Kruskal-Wallis type statistic
for detecting response shifts among those treatments.

In practice, cross-classification tables often occur in which the overall sample size or
the cell frequencies are too small to employ asymptotically derived sampling distributions
for these test statistics. In such cases, as an alternative procedure we can conduct an exact
test of independence, conditional on the observed marginal frequencies. Probably the best
known test of this nature is Fisher’s exact test of independence for 2 X 2 tables. However,
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the same principle applies for any table size r X ¢ and for whatever statistic is used to
detect the condition listed in the alternative hypothesis. The approach is to

1. calculate the appropriate test statistic for every r X ¢ array of non-negative integers
having the same marginal frequencies as the observed table,

2. calculate the null probability of each table conditional on the marginal frequen-
cies,

3. define the attained significance level to be the sum of the null probabilities of those
tables which are at least as favorable to the alternative hypothesis (as measured by
the test statistic) as the observed table.

Let n;; denote the frequency observed in the cell falling in the i* row and j*' column
(1 <i<r 1 £j< c)of the cross-classification table. The main difficulty in carrying out
exact conditional tests is the sheer number of calculations involved. One must generate all
r X ¢ arrays of nonnegative integers in the set

(1.1) S = {ni,: Z ny = n.,, Z ni; = n;. for all i,j}
7 7

having the same marginal frequencies as the observed table. The conditional probability
under the null hypothesis as well as the value of the test statistic must be computed for
each table in S. The number of tables in S, which we denote by | S|, increases very rapidly
as a function of the sample size. Especially for relatively large table dimensions, | S| is too
large for the practical implementation of the exact tests even when asymptotic approaches
would be crude. To illustrate, for a 4 X 4 table, the maximum number of tables in § when
the sample size is n = 10 is 626; when n = 20, it is 40,176; but when # = 30 an approximate
maximum is 574,249. (The maxima for n = 10 and » = 20 are from Table 5 of the paper by
Agresti and Wackerly [1977]. The figure for n = 30 is based on an approximation for | S|
given in Good’s [1976] paper. The value is 672,156 if Gail and Mantel’s [1977] approxima-
tion is used.) For that table dimension, a computer such as the IBM 370/165 can handle
an exact test with approximately 100,000 tables in a minute of CPU time. Thus, it would
be infeasible to perform an exact conditional test on data such as in Table I, for which
Klotz and Teng [1977] give | S| to be 12,798,781. Some guidelines on the sample sizes that
could be managed for various table sizes were presented in Table 5 of Agresti and
Wackerly [1977].
In the next section, we present a method which can be utilized when

a. there is doubt about whether an asymptotic approximation for the distribution of
the test statistic is valid, and

b. there is doubt about whether an exact conditional test can be economically
implemented.

Instead of analyzing all the tables in the set S, we randomly generate sufficiently many of
them so that the attained significance level of the test can be estimated as accurately as is
practically necessary. A similar approach has been utilized in permutation tests to analyze
data for which all possible permutations cannot practically be considered (see Forsythe &
Frey, 1970, and Boyett & Shuster, 1977). Sampling procedures have also been applied
recently in attempts to provide probabilistic proofs to propositions that would take too
long to prove or disprove by deductive argument, even on a computer. One such appli-
cation involves showing “beyond a reasonable doubt” whether a given large number is a
prime [Kolata, 1976].

2. Approximating Attained Significance Levels in Exact Tests
All of the exact conditional test procedures discussed above focus on the set S of all
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TABLE 1

a
lS! = 12,798,781 in Exact Conditional Kruskal-Wallis Test.

Response
Group Very Low High Very Total
Low High

1 1 5 3 3 12

2 1 6 6 4 17

3 5 7 1 1 14

4 1 9 2 1 13
Total 8 27 12 9 56

2 Klotz and Teng [1977] reported |S| for these marginal distributions.

tables with the same row marginal counts {#,., 1 </ < 7} and the same column marginal
counts {n.;,, 1 <j < ¢} as the observed table. In all instances, conditional upon these
marginal entries, the null probability of observing a table in § with entries {r};} is shown
[Lehmann, 1975, p. 384] to be of the generalized hypergeometric form,

r [
I~ IT o
I=1 J=1 )
n! H H n;,»!

i

Instead of calculating the exact conditional significance level o by considering every table
in §, we propose estimating the significance level by utilizing information from a random
sample oftables in §. Since the tables in § occur with different relative frequencies [see
(2.1)], it is necessary to impose a sampling procedure which produces tables according to
these probabilities.

Refer to Table 2 for definiteness. There is a total of n observations, n., in the first
column, 7., in the second column, and n. in the third column. Corresponding to this
identification of the observations by column we set aside a total of n objects, n., of which
are denoted A, n., of which are B’s and n.; of which are C’s. We then make a random
permutation of these objects and partition the set into groups of the first »,., the next n,.,
and the remaining ny.. This partition can be achieved in n!/(n,.!n,.1n,.!) distinct and
equally likely ways. Now for each of the #,. objects alloted to Group 1, we count the
number of 4’s, B’s and C’s. Let n,, denote the number of A’s, ;. the number of B’s and ny;
the number of C’s, We repeat the above for the n,. in Group 2 and n;. in Group 3. The
result will be a matrix with the appropriate row and column marginals. The number of
ways the internal portion of the matrix can be generated is

( n. )X( M.y )X( . )
Nyy Mgy Mgy Hiz Mg Hag Ny3 Mg N33

(2.1) P(irip{ny., nj}) =
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TABLE 2

Table Used to Illustrate Sampling Scheme

Total
1 2 3 ny-
%91 koY) n)3 ny.
n3) 32 f33 n3e
Total n.l n.z n.3 n

Dividing this number by the total number of partitions just given, we see that the
probability of any particular matrix is in fact as given in (2.1).

A random sample of M distinct tables from S can be achieved by repeating this
procedure M times. After each table has been generated, we calculate the value of the
desired statistic and compare it to the value of the statistic for the table actually observed.
If the values of the statistic for X of the sample tables provide at least as much evidence in
favor of H, as the value of the statistic for the observed table, then the estimated exact
conditional significance level, &, is simply X/M.

Now, the number of *‘tail” test statistic values X is a binomially distributed variable
with M trials and success probability a. For M large, & = X/M is approximately normally
distributed with mean o and variance (1 — a)a/M. Thus if we desire to estimate o within
B units with (1 ~ 6)100% confidence, we require

m = Bl (o1 - )

where Z; denotes the (1 — &)" quantile of the standard normal distribution. Since
a(l —a) <t for all a,

vs s Gt

will be sufficient for our purposes for any a. For example, if we desire to estimate o to
within .01 with 99% confidence, we require

M2 2310 = 1658944,

Thus, we see that M = 17,000 is more than sufficient to estimate o to within .01 with 99%
confidence. Similarly, a sample of just M = 1700 tables is adequate to estimate « to within
.02 with 90% confidence. These values of M lead to inexpensive analyses for tables where
the magnitude | S| is so large that the exact analysis is not feasible.

To illustrate the approximate conditional test, we re-analyzed some tables for which
exact conditional test results were reported by Agresti and Wackerly [1977] and Klotz and
Teng [1977]. The exact chi-square test on Table 3 was reported by Agresti and Wackerly to
yield @ = .004. (To four decimal places, the level is .0038). Our approximate test yielded &
= ,0039 based on sampling 17,000 tables, and & = .0047 based on sampling » = 1700
tables. Alternate test statistics, such as the likelihood ratio statistic or a nominal measure
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TABLE 3

Table Used to I1lustrate Approximation of o in Exact Conditional Chi~square Test

10 1
5 0
5 0

of association, could lead to different o and & values. In the examples we have studied
though, these test criteria lead to very similar results, An exception to this is the Freeman-
Halton test, in which the tables are ordered (often in an anomalous manner) by their
probabilities, rather than by an index of their deviations from the null hypothesis. Klotz
and Teng reported @ = .044055 for the exact Kruskal-Wallis test on Table 4, for which | S|
= 32,194. Using the approximate test with 1700 tables, we obtained & = .042941. These &
values are well within the limits of what would be expected due to sampling error. Of
course, the most important application of the approximate test is to tables for which the
exact test is impractical. We give such an application at the end of the next section.

3. Guideline For Implementation Of The Procedure

In this section we develop some guidelines concerning when the approximation
procedure should be used and the ease with which it can be applied in those situations. If
the sample size is large enough in a particular table that an asymptotic test is clearly
appropriate, then it is probably simplest to use it. For example, in testing for association
between two nominal variances, the chi-square test of independence might be used if all
the expected frequencies exceed five. On the other hand, if we doubt the appropriateness of
the asymptotic test, but the exact conditional test seems feasible, we would use it. For
example, if we wish to conclude the test within one minute of computer time (on a
computer comparable to the IBM 370/165), we could use the exact conditional test when
we are confident that | S| is less than about 100,000 for small tables and less than about
50,000 for larger tables (say with degrees of freedom exceeding ten).

It is not simple to calculate |.S| exactly, a priori, in order to gauge whether an exact
test can be economically implemented. In the general 7 X ¢ case, no closed form expression
is available for | S| as a function of the marginal frequencies. An upper bound for | S| for

TABLE 4

Table Used to Mlustrate Approximation of & in Exact Conditional Kruskal-Wallis Test?

Response (ordered)

A B C D
1 1 4 2 5

Group 2 1
3 4 0

8Exact test conducted in Klotz and Teng [1977].
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various table dimensions and sample sizes is given by Agresti and Wackerly [1977] in their
Table 5. Klotz and Teng [1977] gave a geometric method for evaluating |S|. However,
this method itself could require considerable computer time. For example, they report that
it took 17 seconds of CPU time on the UNIVAC 1110 to determine | S| for Table 1. Gail
and Mantel [1977] obtained a recursive relationship which makes it possible to determine
|S| through a procedure for which | S| is obtained iteratively for a sequence of sub-
matrices of sizes 1 X ¢, 2 X ¢, --+, r X ¢. Their procedure also requires the use of a
computer to obtain a solution, except for small tables with very small sample sizes.

For the purpose of choosing between the exact and the approximate conditional tests,
it is sufficient to calculate an approximation for |S|. Good [1976] conjectured an approxi-
mation for | S| of

1.3n'B
S| ~ rey mng’

where
n1.+C"’I) (n.j+r~1>
H( M. I;I n.j

B =
(n +rc—1 )
n
This approximation seems to perform well when the row or column marginal frequencies
are equal. The ratio of | S| to the approximation fell between .75 and 1.1 for all tables
studied by Good in which the rows margins were equal. Another approximation to IS
was given by Gail and Mantel [1977], based on a Central Limit Theorem argument in

which the vectors (m," * *, Mie—1), i = 1, -+, r, are treated as independent. If the table is
arranged so that » 2 ¢, then their approximation is
nZ
e+ 1)( Z n — —z;)
7

¢ 1
~ n.+c—1 ][ e+ 1) :i_”“” 1/2
|51 [I:I ( " ) 27!'2’11.(711.—:{‘ <) 2o 2 Z n.(n. + c)
7 — 7

Gail & Mantel suggest that this approximation improves as r and the {, } increase in size.
The results of utilizing these approximations on some tables for which |§| is known are
presented in Table 5. In this table, we compare the Good and the Gail-Mantel approxima-
tions to | S| for Tables 1, 3, and 4 of this paper, and for the largest sample sizes for which
the exact test was conducted by Agresti and Wackerly [1977], for various table dimensions
with uniform marginal frequencies. In general, both approximations seem to be reason-
ably adequate with neither establishing a tendency to be more adequate than the other.
Our experience has been that the approximations tend to be less accurate when the
marginal frequencies are markedly non-uniform.

In practice, we recommend that both of the above approximations for |S| be
calculated and used to gauge the order of magnitude of |S|—whether |S| is in the
thousands or hundreds of thousands, for example. If both approximations give values
which make an exact test seem feasible (according to Table 5 of Agresti & Wackerly,
1977), then we suggest using an exact test.

In most applications, use of Klotz and Teng’s geometric construction or Gail and
Mantel’s recursive formulas for calculating the exact size of |§| would be unnecessary,
since an indication of the relative magnitude of | S| is sufficient for gauging the feasibility
of the exact test. If we doubt the adequacy of the asymptotic approximation, and if the
exact conditional test appears to be too time-consuming, then the approximation of the
exact conditional significance level should be obtained. We investigated the degree of
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precision with which the attained significance level in the exact chi-square test of inde-
pendence can be estimated on the Amdahl 470V /6 11 computer. Specifically, we observed
the number of seconds of CPU time which is required to obtain an estimate of « using
17,000 random tables, for which P(|& — a] < .01) = .99, for several different table
dimensions and sample sizes. Special emphasis was given to arrays that cannot be easily
handled using the exact test. Table 6 reports these results, for the cases in which all
marginal frequencies are equal or within at most one of each other. These times include
compiling time for the program as well as the time spent in the subroutine.

In comparing the approximation procedure to the exact conditional test, two differ-
ences are suggested by Table 6. First, unlike the exact test, for a fixed sampie size the
approximation procedure is practically as feasible on a table of large dimensions as on one
of small dimensions. This is because the same number of tables (17,000) is generated in
either case for the approximation procedure, whereas |S| is dramatically larger for
implementing the exact test on the larger table dimensions. Secondly, the CPU time is
approximately linearly related to the sample size n in the approximation procedure, for
fixed table dimensions. This is not surprising, since the number of operations required to
generate each of the 17,000 tables is roughly proportional to the number of elements there
are to be allocated to the cells of the table. For the exact test, on the other hand, | S| blows
up dramatically as n increases, for fixed table dimensions. In summary, comparing Table 6
to Table 5in Agresti and Wackerly [1977], we see that the approximation procedure can in
practice be used economically for those sample size-table dimensions combinations for
which the exact test is impractical and the asymptotic test is questionable. Also, good
estimates of « can be obtained in much less time than indicated in Table 6, if necessary.
For example, P(|& — a| < .02) > .90 if we generate 1700 tables, which takes roughly one-
tenth the CPU time indicated in that table.

We mentioned in Section 1 that Table 1 could not be feasibly handled with the exact
Kruskal-Wallis test, since |S| = 12,798,781. The evaluation of that table using the
approximation procedure required 21.19 seconds of CPU time for generating 17,000
tables, and yielded & = .020. The corresponding approximation for 1700 tables required
only 3.46 seconds, and yielded & = .024.

TABLE 6

Amdahl 470V/6 11 CPU Time for Approximating o
in the Exact Chi~square Test of Independence Using
17,000 Tables

Sample Size

Table

Dimensions 20 30 50 100 200
2 x 7 10.58 14.14 21.72 39.39 78.10
3 x 4 10.08 13.07 19.58 36.05 69.51
4 x 4 10.42 | 13.64 20.28 36.79 70.16

5x5 I1.70 - 15.56 22,02 39.59 72.81
6 x 6 13.37 17.19 24,14 41,70 78.5¢C
NOTE: Tables on right of line cannot be evaluated in less than
one minute CPU time using the exact conditional test.
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Note that the values 17,000 and 1700 for the number of tables to be generated are
actually upper bounds for the number of tables required to obtain the desired accuracy.
These quantities were calculated by using the worst possible value for , namely o = .50, If
a is expected to be closer to zero or one, the actual number of tables required will be
substantially less than these upper bounds. Further savings in computer time could be
accomplished by doing the sampling sequentially. For example, if it is necessary simply to
distinguish whether & < .05 or & > .05, the sampling process is likely to be terminated
more quickly unless « is close to .03,

Although we have limited our discussion of exact conditional tests to analyses of
bivariate cross-classifications, clearly the concept of estimating attained significance levels
when asymptotic approximations are poor can be extended to other situations. In particu-
lar, exact tests of independence, of no interaction or of no partial association, are of
interest in multidimensional cross-classification tables with small sample sizes. Gail &
Mantel’s approximation for the number of 3-dimensional tables having a given set of
marginal frequencies can be used to decide whether the a-levels should be estimated rather
than exactly calculated.

A copy of the Fortran subroutine used for estimating attained significance levels in
the Kruskal-Wallis test and in the chi-square test of independence is available from the
authors.
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