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Exact  conditional tests of independence in cross-classification tables are 
formulated based on the x 2 statistic and statistics with stronger operational 
interpretations,  such as some nominal and ordinal measures of association. 
Guidelines for the table dimensions and sample sizes for which the tests are 
economically implemented on a computer are given. Some selected sample 
sizes and marginal distributions are used in a numerical comparison between 
the significance levels of the approximate and exact conditional tests b~sed on 
the x ~ statistic. 

Key words: exact test, independence, contingency tables, ordinal and nominal 
measures of association, chi-square test, computer algorithm. 

1. Introduction 

Over the years, much has been written about the adequacy of the 
chi-square distribution as an approximation for the sampling distribution 
of the statistic used to compare observed frequencies in a cross-classification 
table to the frequencies "expected" under the null hypothesis of independence. 
Most t~xtbooks of statistical methodology contain a warning that the ex- 
pected frequencies should fulfill some requirement (e.g., all exceed five), 
but there is considerable variability in these suggestions. Some papers in 
the literature emphasize the robustness of the chi-square test for small 
expected frequencies, but a simulation study by Roscoe and Byars [1971] 
showed that average expected frequencies as low as two or as high as ten 
may be needed, depending on the underlying structure. 

Constraints in the research problem often do not permit sample sizes 
to be large enough so that even very lax constraints of this type can be met. 
For these cases, some researchers have suggested modifications to the chi- 
square test to yield "better" approximations to the sampling distributions 
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of test statistics which are similar to the usual chi-square test statistic 
[see, e.g., Haldane, 1943; Nass, 1959]. However, probably the most common 
approaches in practice are to combine or eliminate categories so that sug- 
gested regularity conditions are met on a reduced table, to use Fisher's 
exact test (for 2 X 2 tables), or simply to ignore any possible difficulties 
with the chi-square approximation and implement the usual chi-square test. 
No matter how much research is done on the adequacy of applying asymptotic 
(large sample) techniques to tables with small cell frequencies, there wilt 
always be tables for which the observed cell frequencies are too small, so that 
the researcher will have to combine or eliminate categories in order COln- 
fortably to implement an approximation procedure. Many times this combina- 
tion of categories cannot be done meaningfully. Even when it can be done, 
there remains the question of how much information is lost due to this 
(sometimes arbitrary) combination or elimination. An example of this is 
~ven in Section 2. The main purpose of this paper is to provide useable 
(with computer facilities) and conceptually simple exact conditional methods 
of analyzing such tables. 

In the next section we demonstrate how the chi-square statistic or 
other statistics may be used in exact tests of independence against the 
general alternative of dependence. In Section 3, ways to further "strengthen" 
such exact conditional tests of independence by considering more specific 
alternative hypotheses are discussed. In particular, Kendall's tau b is used 
to illustrate how alternative hypotheses involving commonly used measures 
of association (whose asymptotic sampling distributions provide inadequate 
approximations for small samples) can be used to give small sample exact 
significance probabilities for tests of different aspects of cross-tabulated data. 

The particularly attractive aspect of these tests is that they are e:cact 
tests of preordained level and that no worries about the adequacy of large 
sample approximations are encountered. The only constraint on the technique 
is the amount of time necessary to implement the procedure if the cell entries 
or table dimensions are large. 

In Section 4 we discuss the extent to which these exact conditional 
tests can be implemented using the computer. In particular, it is shown 
that the exact tests of independence using the x ~ formula or a measure 
of association as the tes¢ statistic are manageable (i.e., require less than a 
minute of CPU time on the IBM 370/165 computer) for 2 X 3, 2 × 4, 
2 X 5,2 X 6,2 X 7,3 X 3,3 X 4 , 3  X 5, and4 X 4 tables for many of the 
sample sizes and marginal distributions for which one would question the use 
of large sample approximations. 

For a variety of sample sizes and marginal distributions, numerical 
comparisons are made under the null hypothesis of independence between 
the exact conditional distribution of the ×2 statistic and the corresponding 
chi-square distribution which serves as the large sample approximate condi- 
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tional distribution of that statistic. The discreteness of the exact distribution 
for small sample sizes makes it difficult to describe when the approximate 
test is robust. 

2. Exact Co~ditional Tests of Independence 

Suppose that a random sample of n observations is categorized jointly 
according to two classification schemes, one with r categories (rows) and 
the other with c categories (columns). Suppose further that the cross-classifica- 
tion frequencies I f ,  , 1 ~ i _< r, 1 _< j < e} are represented by an r X c 
table. In the tests considered in this paper, we regard the set S of all cross- 
classification tables with nonnegative integer entries which have the same 
row marginal frequencies {]~. , 1 _< i < r} and the same column marginal 
frequencies {1. ~ , 1 < j < c l as the observed table. Conditional upon these 
marginal entries and under the null hypothesis of independence, the prob- 
ability of the table with entries l], '} satisfying ~'~.,.=/ ] , '  = 1.~ and 
~-~i=, ° f~i' = f ,  for 1 < i < r and 1 _< j < c can be shown [Halton, 1969] 
to equal 

I,.! I.,! 
P ( { I , . / I  I {1,. , / . , l )  = '= '  ~ '= '  

n, f l n  I, , ' ,  
i ~ l  i = l  

In the remainder of this paper, w e  shall denote the probability 

P({L~}TU,. ,L~})  
| 

of the observed table by P and the probability P({]~/} ] {],. , l.~}) of any 
other table with the given marginal frequencies by P'. 

Freeman and Halton [1951] formulated an exact conditional test of the 
null hypothesis of independence versus the general alternative by taking as 
the attained significance level 

p = ~ I ( P '  <_ P )P ' ,  

the sum of the probabilities of those tables which occur with no higher 
probability than the observed table. ( I (A )  denotes the indicator function 
of the set A.) Procedures which order sample points solely on the basis 
of the probability of occurrence have received strong criticism [see, e.g., 
Radlow & Alf, Jr., 1975]. The rationale behind this criticism is that some 
configurations of cell frequencies may be less likely than the observed table 
under the null hypothesis, but yet, in some sense, exhibit less discrepancy 
from the null hypothesis than the observed table. 

On the other hand, useful alternative exact conditional tests can be 
simply formulated by using other criteria for ranking the tables according 
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to the deviation each exhibits from independence. For example, the x 2 
statistic or the likelihood ratio statistic (which also is asymptotically dis- 
tributed chi-square) for testing independence could be computed for every 
set {],'} with the given marginal frequencies. The attained significance 
level is then defined to be the sum of the probabilities of all tables in S for 
which the value of the statistic is at least as large as the value of the statistic 
for the observed table. That is, 

~)1 = Z I (x ~ >- x,,~) P ' ,  

is the attained level for the exact conditional test based on this criterion, 
where xo 2 denotes the value of the x 2 test statistic for the observed table. 
If a significance level, a, has previously been specified, then one would 
reject the null hypothesis if p~ _< a. Notice that the test is implemented 
conditional upon the marginal frequencies, which are sufficient statistics for 
the unknown marginal proportions. The overall unconditional probability 
of a Type I error using this strategy is 

PHo (reject Ho) = E[PHo (reject H0 I marginal frequencies)] ~ a, 

where the expectation is taken with respect to the distribution of all sets 
of marginal frequencies with the same total sample size. For 2 X 2 tables, 
this procedure is equivalent to the well-known "Fisher's exact test", for 
which tables and computer program packages are widely available. 

The exact conditional distribution of a statistic such as x 2 may be highly 
discrete if the sample size is small or if the marginal frequencies are such 
that the set S is small in size. In order to describe how much the discreteness 
at the observed value affects the attained significance level, one could also 
report the value of 

p,* = ~_, I (x  2 > X,,2)P '. 
s 

In Section 4, some numerical comparisons are made between results 
using this exact test for the x 2 statistic and the test using the chi-square 
distribution as an approximation. The poorness of the approximation for 
many tables suggests that this exact test would often be of practical use. 

Since there is no need to restrict the exact conditional tests to the 
traditional chi-square type of statistic, the statistic used to rank the tables 
could alternatively be a measure with a stronger operational interpretation. 
For example, Goodman and Kruskal [1954] introduced an asymmetric 
measure of association for nominal scale variables called tau, which measures 
the proportional reduction in error obtained when an independent variable 
is used for proportional prediction of a dependent variable. Tau ranges 
in value between zero and one, where a value of zero is equivalent to in- 
dependence (all 1,; = e,) ,  and a value of one occurs when, for each category 
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of the independent variable, all observations fall into only one category 
of the dependent variable. Thus, one could base the exact test of independence 
vs. the alternative of dependence on 

p,~ = ~_, l ( r  >_ r,,)P' or p2* = ~_, l ( r  > ro)P',  

where ro is the value of tau for the observed table. The sampling distribution 
of tau also is only known asymptotically [Goodman & Kruskal, 1963, 1972], 
so this exact test is most useful in the small sample case, as with other alterna- 
tives to the traditional chi-square test. 

Some examples of the computer time required for conducting the above 
tests are given in Section 4. Given the computing feasibility, the exact 
conditional attained levels of statistics such as x 2 and r should be evaluated 
in many practical situations. Information is lost or obscured whenever 
categories are omitted or combined for the purpose of improving the chi- 
square approximation. Dependence existing between the more complete 
classifications may no longer be exhibited. For example, Pl = .004 (pl* = .004) 
for Table 1, but if Categories two and three of both the row and column 
classifications are combined to fulfill typical requirements for goodness of 
the chi-square approximation, a non-significant value of x ~ = .009 results. 
In addition, many tables cannot be collapsed meaningfully. The data~ in 
Table 2, for example, represent twenty students classified according to the 
choice of whether to have each question on an exam graded immediately 
upon completion (I) or after the entire examination had been completed (C), 
and according to the proctor administering the exam. Unless the proctors 
themselves were classified with respect to some variable, it would not be 
reasonable to combine proctors in investigating whether their attitudes 
influenced the students' choices. Thus the chi-square test would be in- 
appropriate. The table can be analyzed using an exact conditional test, 
however; it shows significance at the p~ = .043 (p~* = .030) level using 
the x ~ criterion. 

The small sample effect of using the chi-square distribution for the 
unadjusted x 2 statistic will in most cases be unknown. The examples described 
in Section 4 (see Table 7) contain good approximations as well as poor 
approximations in both underestimating and overestimating the exact 
significance level. This is not surprising, since typically the exact conditional 
distributions are highly discrete. A modified statistic such as the one sug- 
gested by Nass [1959] would probably improve the approximation, but 
still in some situations a researcher should worry about the unknown size 
of error and may thus prefer to use a more exact approach. In fact, in some 

t Obtained from C. R. Lea, Departmellt of Psychology, University of Florida, and 
K. A. Lockhart, Department of Psychology, Western Michigan Universlty. 
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TABLE 1 

I0 1 6 

3 5 0 

5 0 1 

Proctor 

TABLE 2 

Choice of Grading Method 

I C 

1 2 1 

2 1 3 

3 4 0 

4 0 2 

5 0 3 

6 1 1 

7 0 2 

situations i t  is natural to consider the marginal frequencies to be fixed, 
in which case these exact procedures are certainly to be preferred. 

Of course, the attained significance levels using different statistics in an 
exact conditional test need not be identical. In  our experience, though, the 
attained significance levels for the criteria discussed above are usually 
similar, if not equal. For example, in Table 2, p~ = .043 (pl* = .030) and 
p~ = .046 (P2* = .030, r = .601, treating choice of grading method as the 
dependent variable). 

The specific tests discussed thus far are exact a-level conditional pro- 
cedures for the null hypothesis of independence versus the general alternative 
of dependence. I f  one is especially interested in some particular alternative 
and would like the protection of higher power for tha t  alternative (at the 
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same time losing power for some less interesting alternatives), an overall 
type of test should not be used. In the next section, an example is provided 
of a similar procedure designed for testing against a particular type of 
alternative. 

3. Other Alternative Hypotheses ]or Exact Tests o] Independence 

The exact test procedure can clcarly bc gcncralized to provide exact 
conditional tests of the null hypothesis of independence against alternative 
hypotheses more specific and of greater interest in the study" of cross-class- 
ification tables than that of dependence (non-independence). For example, 
several measures have been formulated to describe the degree of various 
types of association between two variables. 

As an example, Kendall's tan measures the difference between the 
proportions of concordant and discordant pairs of observations for variables 
with ordered observations. A generalized version of this measure for cross- 
classification tables (called Kendall's rb) corrects for pairs of observations 
tied with respect to at least one of the categorizations. Letting 

c =  k__, LJ,5(Z ZJ, ) 
i--I i=1 i ' > ¢  i~>5 

and 

- =  Z  ;I,5(Z Eft5) 
*=l 5=1 i ' > i  1'<5 

denote the numbers of concordant and discordant pairs, respectively, 

( C -  D) 

:~ 2 ,o, 2 2 , t . , ( / . 5 -  1) 

The value of rb ranges between - 1  and + 1; rb is zero under the condition 
of independence. 

The random sample version tb of rb is asymptotically normally distributed 
about rh [see Agresti, 1976]. Our investigations, however, have provided 
evidence that the normal approximation may be quite poor for small sample 
sizes, especially if ~ is replaced by its maximum likelihood estimate ~. Table 3 
summarizes the results of a simulation study in which the samples are 
generated randomly according to a bivariate normal distribution (with cor- 
relation p = 0, .2, .5, .8). They are then categorized into a 4 X 4 table accord- 
ing to the quartile of each marginal distribution into which the observation 
falls. The corresponding rb values are 0, .146, .368, and .641 [Agresti, 1976, 
Table 2]. Even for this "nice" (equal marginal proportions) case, the propor- 
tion of times that I tb -  rbl/b exceeds the normal percentage point Z,/2 is 
consistently larger than a. The approximation is especially poor for small 
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TABLE 3 

The number of times in i000 samples from a bivariate normal 

distribution with correlation p that I%- Tbl/~ >Z~/2, for 

4x4 cross-classifications with equal marginal proportions 
(Underlined values are more than two standard deviations 
(2/-1000 ~ (I-~)) from expected value I000 ~). 

Sample Size ~ p 

0 .2 .5 .8 

i0 .i0 205 202 208 218 
.05 153 142 161 179 
.01 82 77 93 127 

2o • i0 i60 17i i52 i5i 
.os i07 n6 io--Y io--~ 
.01 48 50 55 62 

30 .i0 129 124 127 136 
.05 70 73 86 93 
.01 23 26 26 36 

40 .i0 127 120 118 118 
.05 76 65 70 79 
.01 23 24 33 33 

50 • i0 116 114 116 123 

.05 64 56 68 66 

.01 15 21 25 24 

70 .i0 108 106 105 130 
.05 50 58 58 77 
• 01 14 19 16 33 

values of n and small values of a. In  these cases, a test  of H0 : Tb = 0 using 
the large sample statistic Z = t b / #  would yield an at ta ined significance level 
much less than the t rue (unknown) level. A more extensive s tudy by  
Rosenthal  [1966] for a related measure (gamma) showed tha t  such approxi- 
mations tend to further  deteriorate when the marginal  proportions are 
very different. Both investigations reveal a tendency for the max imum 
likelihood value h to underest imate ~. in  the extreme case in which tb = 1, 

= 0. The bias of 5 is likely to be a t  least part ial ly responsible for the poorness 
of the approximations. 
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A logical alternative procedure to a z-test for small samples is to perform 
an exact conditional test of the null hypothesis of independence against the 
alternative that the population value of Kendall's rb is non-zero (i.e., that 
the proportions of concordant and discordant pairs of observations are 
unequal in the real or conceptual population from which the data were 
sampled). That is, one could calculate 

P:~ = ~_~ I( trbl  >-- ir~.ol)P' or Pa* = ~ I(]r~] > Ir~.o!)P', 
S 

where rb.o is the value of rb for the observed table. The null hypothesis 
would be rejected at (preordained) level a if P3 _< a. 

Since the exact test procedures using the individual probabilities, the 
x" statistic, the likelihood ratio statistic, or Goodman and Kruskal's tau 
all ignore any natural ordering among the categories of the two classifications, 
the exact test procedure using Kendall's r~ as the test statistic is more powerful 
in rejecting a false null hypothesis of independence for many underlying 
bivariate distributions. This is also true, of course, in the asymptotically 
formulated tests for ordered categorical data [Proctor, 1973]. For example, 
the attained significance level for the positive trend displayed in Table 4 is 
.053 using rb as the criterion, but is .514 using the exact x 2 test. 

In practical applications, 2 X c tables often arise in comparing two 
groups with respect to some variable with c ordered levels. Independence 
here corresponds to homogeneity, or equality of the two discrete distribu- 
tions. It  can be shown that the exact conditional test of identical discrete 
populations using the Mann-Whitney statistic is a special case of the exact 
conditional test of independence using Kendall's r~ as the criterion. Klotz 
[1966] has considered the problem of enumeration of matrices for this test. 

There are several other summary statistics which are often worthwhile 
to consider using the exact conditional test framework. For example, Goodman 

TABLE 4 

High Medium Low 

High 6 4 2 

Medium 4 4 4 

Low 2 4 6 
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and Kruskal [1954] have introduced other measures of association for cross- 
classification tables representing variables measured on an ordinal scale 
(e.g., gamma) or a nominal scale (e.g., lambda), which describe specific 
types of dependence. The principle behind these tests extends naturally to 
the multi-dimensional situation. Thus exact conditional tests can be used 
for alternatives phrased in terms of measures of interaction when the sample 
sizes are too small to apply asymptotic approximations. 

4. Computation o] Exact Tests, with Numerical Comparisons 
The exact conditional tests of independence described in the previous 

two sections are seldom if ever used for tables larger than 2 X 2, mainly 
because of the burden of identifying all of the tables with the same marginal 
distributions as the observed table and computing the conditional probabilities 
and values of the test statistics for those tables. In this section, the extent 
to which these procedures can be applied using modern computing facilities 
is considered. 

TABLE 5 

Table 
Size 

IBM 370/165 CPU time in seconds for conducting simultaneously three 
exact tests, for tables with uniform marginal frequencies (size of 
conditional set S given in parentheses; time exceeds one minute for 
omitted entries). 

d.f. ............... Sample Size 

5 I0 15 20 30 40 50 70 i00 

2x3 

2x4 

2x5 

3x3 

2x6 

2x7 

3x4 

3x5 

4x4 

2 .01 .01 .02 .02 .04 .07 .i0 .19 .36 
(5) (14) (27) (44) (91) (154) (234) (444) (884) 

.01 .03 .04 .06 .18 .40 .72 1.81 4.92 
(7) (28) (70) (146) (408) (891) (1,638) (4,218) (11,726) 

4 .01 .03 .08 .20 .80 1.89 4.05 13.89 52.88 
(i0) (51) (155) (381) (1,451) (3,951) (8,801)(30,381)(116,601) 

4 .01 
(11) 

5 .01 
(i0) 

.04 .12 .27 I.i0 3.02 6.86 23.35 
(65) (231) (546) (2,211) (6,020)(13,566)(47,450) 

.04 .13 .39 1.99 6.41 16.65 
(70) (273) (826) (4,332) (14,476)(38,802) 

9 .04 .44 4.53 29.02 
(33) (626) (6,241) (40,176) 

8 .03 .31 2.19 9.66 
(30) (440) (3,391) (16,250) 

6 .02 .i0 .57 1.97 13.42 57.05 
(18) (180) (993) (3,600) (25,191)(110,328) 

6 .01 .06 .26 .85 5.16 21.31 
(i0) (96) (483) (1,672) (11,008) (46,398) 
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March [1972] has developed a subroutine for calculating the conditional 
probabilities needed for these tests. Boulton [1974] improved March's routine 
and thus decreased the amount of computer time needed to identify the 
tables in S. We have developed a FORTRAN subroutine (incorporating 
Boulton's routine for identifying the tables in S and calculating their prob- 
abilities) for conducting all of the exact conditional tests for r X c tables 
described in this paper, and we have measured the computing time for 
various values of r _ c and various sample sizes. For a given table dimension 
and sample size, the table entries were designed to keep the row marginal 
frequencies equal or within at most one of each other, and similarly for the 
column marginal frequencies~ In general, for a given sample size, the number 
of tables in the set S is much larger when the marginal frequencies are uniform 
than when the row or column marginal frequencies are highly unequal. 
Thus if an exact test of independence is manageable for an r X c table with 
sample size no and uniform marginal distributions, it should also at least 
be manageable for a n y  r × c table with sample size n < no and any marginal 
frequencies such that 

For various table dimensions and sample sizes with uniform marginal 
distributions, Table 5 lists the number of tables in S and the IBM 370/165 
computer (CPU) time spent in the FORTRAN subroutine for calculating 
P, Pi , and P2 • The times listed in Table 5 should be interpreted as an ap- 
proximate gauge, since CPU time will vary from one computer model to 
another. The memory requirement for the entire program is about 40,000 
bytes, of which approximately 15,000 are allotted for the subroutine. 

Table 5 indicates the practical limits of the exact conditional tests. 
Since the computer time increases very rapidly for tables with sample sizes 
larger than those given in Table 5 (at least when the marginal frequencies 
are uniform), the potential user should exercise caution when the table 
dimensions or sample sizes exceed those listed. However, notice that when 

TABLE 6 

60 4 1 0 

14 5 4 1 

3 3 3 2 



122 PSYCHOMETRIKA 

the degrees o! freedom for a table dimension do not exceed approximately 
six, these exact tests can be simultaneously conducted economically for most 
of the sample sizes for which one might doubt the goodness of the chi-square 
.approximation for the distribution of the x: statistic. When the marginal 
:frequencies are highly unequal, the exact tests are much more economical. 
:For example, Table 6 is a 3 X 4 table with a sample size of 100, yet S contains 
33,675 distinct tables and the computer time for simultaneously conducting 
these exact tests was only 18.77 seconds. The computing times using Kendall's 
~r~ as the test statistic (when both sets of marginal categories are naturally 
ordered) are very similar. A copy of the FORTRAN subroutine which we 
have used is available upon request. 

The exact test. procedures are used in studies concerning how small 
the sample size may be for various approximation techniques to work well. 
That is, conditional approximate procedures can be compared to the condi- 
tional exact tests under the null hypothesis of independence so that guidelines 
can be developed as to when the exact tests must be used. For example, 
for several table dimensions and sample sizes, we have compared the per- 
centage points of the chi-square distribution (which is the asymptotic dis- 
tribution of the x 2 statistic even for fixed marginal frequencies) to the cor- 
responding percentage points of the exact conditional distribution of the 
x 2 statistic, under the null hypothesis of independence. Table 7 compares 
the nominal significance level a (for a = .01, .05,. 10) to the exact probability 
of exceeding the 100(1 -- ~) percentage point of the chi-square distribution. 
When the frequencies within each marginal distribution are equal, the 
chi-square distribution gives a good approximation for a sample size of 
~,bout 30, for the table dimensions considered. Otherwise, though, Table 7 
reaffirms the difficulty of making general statements about the robustness 
of the chi-square test for small samples. In some cases the approximation 
is quite good, whereas in others it is clearly inadequate for the percentage 
points chosen. Moreover, the poorness of the approximation is not always 
in the conservative direction. 

One reason for the inconsistency in the goodness of the chi-square 
approximation is that the exact conditional distribution may be highly 
discrete for small sample sizes. Thus, the precision of the approximation 
described in Table 7 at a given percentage point of the chi-square distribution 
is affected by whether there is a substantial jump in the exact distribution 
function just below or just above that point. As an example, Table 8 displays 
the exact conditional distributions of the x 2 statistic in the upper 10% of 
the chi-square distribution with 2 d.f., for six of the 2 × 3 tables used in 
Table 7. Notice that even when n = 30 and the expected frequencies all 
equal five, x ~ = 5.600 has a probability of occurrence of .088. When n is 
increased to 50, there are 52 distinct x 2 values in the upper t~il (above 4.605) 
for the 2 X 3 table with marginal frequencies (25, 25) and (16, 17, 17), 
and the maximum probability is only .021. When the marginal frequencies 
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TABLE 8 

2 
The conditional distribution of the X statistic in the upper 
10% of the chi-square distribution with 2 d.f., for some 2x3 
tables (The .i0, .05, and .01 upper percentage points of the 
chi-square distribution are 4.605, 5.991, and 9.210). 

Marginal 2 proba- Marginal 2 proba- 
Frequencies X value bility Frequencies X value bility 

(5,5),(3,3,4) 6.000 .048 (2,8),(1,3,6) 4.792 .133 
n=lO 7.333 .048 n=10 5.833 .133 

(i0,i0), (6,7,7) 5.524 .048 (4,16), (2,6,12) 4.896 .050 
n=20 6.381 .032 n=20 7.500 .008 

7. 143 .011 9.063 .015 
8.571 .005 9.583 .014 
9.714 .005 11.667 .006 

10.952 .003 
11.238 .002 
13.143 .001 
14.000 <.001 

(15,15), (i0,i0,i0) 
n=30 

5.600 .088 (6,24),(3,9,18) 4.653 .037 
7.200 .020 n=30 5.000 .092 
9.600 .006 6.042 .011 

10.400 .007 6.389 .015 
12.800 .001 7.431 .008 
15.200 <.001 10.208 .004 
16.800 <.001 11.944 .001 
20.000 <.001 13.333 .002 

14.375 .002 
17.500 <.001 

are (40, 10) and (30, 15, 5), there are 23 distinct values in the upper tail, 
and the maximum probability is .033. 

5. Conclusion 

The primary argument in this paper has been that exact conditional 
tests of the null hypothesis of independence should be applied to many 
cross-classification tables in which available approximations (such as the 
chi-square distribution for the x 2 statistic) would be questionable and 
collapsing the table or eliminating categories would result in an intolerable 
loss of information. We have shown how such tests are especially useful 
for considering specific alternative hypotheses, such as one concerning the 
value of Kendall's rb when the categories are ordered. Further encouragement 
for the use of these exact conditional tests was provided by the fact that 
for many table dimensions, the procedures are easily manageable on the 
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compute r  for near ly  any  set of frequencies for which appl ica t ion  of the 
asympto t i c  approx imat ing  d is t r ibut ions  would be dubious.  The  exact tests  
can also be used to gauge the accuracy of approximate  techniques  for small  
samples.  
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