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ABSTRACT

Rank tests are considered that compare t treatments 1in
repeated measures designs. A statistic is given that contains as
special cases several that have been proposed for this problem,
including one that corresponds to the randomized block ANOVA
statistic applied to the rank transformed data. Another statistic
is proposed, having a null distribution holding under more general
conditions, that 1is the rank transform of the Hotelling statistic
for repeated measures. A statistic of this type is also given for
data that are ordered categorical rather than fully ranked.

: Unlike the Friedman statistic, the statistics discussed in this

) article utilize a single ranking of the entire sample. Power

i calculations for an underlying normal distribution indicate that
the rank transformed ANOVA test can be substantially more powerful

than the Friedman test.
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1. INTRODUCTIOM

-

Let X; = (xil""'xit) , i=1,...,n, be n independent
ybservations taken from a t-dimensional continuous distribution.
‘or each subject i, we shall regard 31 as repeated measures, one
ybservation for each of t treatments. This paper considers ways
yf testing for treatment effects, using rankings of the data.

Denote the distribution function of X; by G. 1In Section 2 we
.onsider tests that are appropriate when the hypothesis of no
reatment effects is expressed as the exchangeability condition
:(xl,...,xt) = C(xil,...,xlt) for all x and for any permutation
11,...,{t) of (1,...,t). The most commonly used rank test for
his situation is the Friedman test (see, e.g., Lehmann 1975, p.
63), which compares treatment mean ranks when ranks | through t

assigned to the treatments separately for each subject.
lrernative tests formulated for this situation by Sen (1967),
och (1969), Raviv (1978), Lam and Longnecker (1983), and for
andomized complete blocks by Iman, Hora, and Conover (1984)
ompare treatment mean ranks when the entire set of N = tn
hservations is ranked. For t=2 these tests correspond to making
airwise comparisons of all (Xil‘ ij) (as would be done by a
ann-Whitney test for independent samples) rather than sign test-
ype comparisons of only the natural pairs (th, xiZ)' We shall
how that some of these statistics are similar, in the sense that
hey are special cases of a statistic we derive for this problem.

In Section 3, we present a test statistic that is appropriate
hen the hypothesis of no treatment effects is more broadly ex-—
ressed as the marginal homogeneity condition G = CZ JP Gt‘
here C]""'Ct denote the one—-dimensional marginal distributions
f G. Like the ones in Section 2, this statistic compares
reatment mean ranks when there is a single ranking scheme.
owever, to obtaln the asymptotic null distribution of the
tatistic, it is only necessary to assume marginal homogeneity

ather than to make strong assumptions about the joint

{stribution (such as a common correlation between pairs of
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treatments). The relationship between this rank test and the ones
presented in Section 2 is analogous to the relationship for the
[Klj] between the Hotelling test applied for the comparison of
means in a repeated measures context and the more structured
(compound-symmetry based) repeated measures ANOVA. See, for
instance, Morrison (1976, pp. 141-151). In fact, this statistic
{s simply the Hotelling statistic applied to the ranks, whereas
the statistic proposed by Iman, Hora, and Conover (1984) 1is the
ANOVA statistic applied to the ranks.

In Section 4 we give a statistic for testing marginal
homogeneity for an ordered categorical response, for which the
data take the form of counts in a t-dimensional cross- :
classification table. In that case, the test also compares mean
ranks based on a single ranking scheme for the combined sample,
and it can be expressed in terms of mean ridits for the one-
dimensional marginal distributions.

For several distributional forms, Iman, Hora, and Conover
(1984) made power comparisons between their statistic and others,
fncluding the Friedman statistic and the parametric ANOVA
statistic. 1In Section 5, we make some additional comparisons of
size and power for these statistics and for the Hotelling rank
transform statistic. These indicate for a multivariate normal
model that the Iman, Hora, and Conover rank transformed statistic
(1) can be substantially more powerful than the Friedman
statistic, and (ii) is fairly robust under an autoregressive

structure for the treatment correlations.

2. ANOVA RANK TRANSFORM TEST

Let Ry, denote the rank of X,  when it is ranked among the
entire set of {X  , 1<u<n, 1<v<t)}. Midranks are assigned when
ties occur. Suppose that the null hypothesis of "no treatment
effects” 1s Interpreted in the strict sense to mean that G
satisfies G(xl,...,xt) = G(xi s ) for all x and all

permutations (11,...,it) of (1,...,t). When H, is true,
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Corr{Ria,'Rih) is identical for all a*b and Corr(Ria, ij) is
identical for all a and b with 1*j., Denote these values by p =
Corr(Ry ,» Rih) and X = Corr(Rta, th}.

Under HO' Ria is equally likely to be any of the ranks

l,...,tn = N, so that E(R;. ) = (N+1)/2 and o? = var(R; ) =
(Nz—l)/l2. Now Var(% Ria) = [n+n(n—!)l]uz, and for a#b,

Cgv(f Rygas § ij) = [np + n(n—l)k]cz. Also, Var(IL Ria) =0

implies that A = (1+ (t-1)p)/(n-1)t. Let R , =L Ry /n for
* i

]<a<t. These treatment means satisfy L E_a/t = (N+1)/2. The
covariance matrix of the mean ranks is
1 -1/(t-1) ... =1/(t-1)
[02(t-1)(l=p)/N] | =1/(e=1) 1 een =1/ (E-1) (2.1)

- . .
. . .
- . &

When the asymptotic distribution of R” = (R_ps-++sR ) 1s
multivariate normal, it follows that

T=n] (R, - (1)/2Y2/0%(1-p) (2.2)
a
has an asymptotic chi-squared distribution with df = t-1.

Let ry, = Ry, /(N+1) and let r =t ria/n. When p is
replaced by an estimate and 0 is replaced by an estimate or by
{ts null value, T becomes a statistic that can be used to detect
whether any of [EF_a, a=l,...,t} differ from 1/2. Conditional on
the ranks assigned to each subject, the (t!)n permutations of
ranks are equally likely under HO' For small samples, an exact
test can be based on the permutation distribution of the numerator
of T.

Lam and Longnecker (1983) suggested a statistic for the
paired data (t=2) case, based on this single ranking scheme. When
the sample Spearman correlation of the {(xil, x12)' i=1,...,n} is
substituted for p and the null value is used for 02, T 1is reiated

to thelir statistic Wp by sz = T(N-1)/N. Lam and Longnecker
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showed that their statistic is also asymptotically equivalent to
one proposed by Raviv (1978). The Lam and Longnecker statistic is
actually the special case of a statistic proposed by Sen (1967)
applied with "Wilcoxon scores.”

Koch (1969) presented statistics for repeated measures that
use aligned ranks. His statistic for this setting (formula (38)

for v=1), when applied instead with the regular ranks, equals

W= n?(e-1) TR, - (17212 7 (DT (R, - R P (2.3)

- ~k
wvhere Ry = £ Ria/t° A little algebra shows that T reduces to W

2

if we replace 0 by its null value and p by L[ L r b/t(t-l)f with
afp 2

fab = (F RRyp/n = ((81)/2)?)/0%

Yet another statistic related to T was proposed by Iman,
Hora, and Conover (1984) in a rank analysis for randomized

complete blocks. Thelr statistic

nt ﬁi-a- (N+1)/2}2/(e-1)

F, = 2 (2.4)

= = 2. _
f : !Ria Ry - R _+ (N+1)/2}2/Ce=1)(n-1)

has ranks substituted for the {xia} in the ANOVA statistic for
randomized complete blocks. This statistic is also the rank
analog of the ANOVA F statistic for a repeated measures design.
They gave conditions under which g is asymptotically multivariate
normal and the null sampling distribution of (t-l)FR is
asymptotically chi-squared with df = t-1 as n + =, Their
simulations showed that the behavior of FR is closely approximated

by the F distribution with dfl = t-1 and df2 = (t=1)(n-1). If 1in

(2.2) we replace p by the ratio of the average sample covariance



nd average sample variance et al. (1980) and in Barcikowski and Robey (1984). In particular,

_ _ suppose that there 1s no randomization of treatments, such as in

(l/t(tﬂl)){zii (Ria_ R-a)(Rib_ R-b)/(n_”} longitudinal studies. Then it is difficult to make assumptions

= (2.5)
(1/0) {Iz(Ria_ R 3)2/(n—1)] about covariance structure, so the multivariate approach may be
: preferred.
2 H 4
nd replace o by the average sample variance, then T simplifies In analogy to the Iman, Hora, and Conover (1984) proposal of
2 (t—l)FR. _In fact, the denominator of the FR GEEELEELE. Ydd ! a rank transformed version of randomized complete blocks ANOVA,
2 here we consider a version for mean ranks of Hotelling's test.
xact expectation o (l-p) under Hy-
When G =...= Gt’ it is not necessarily true that {Corr(Ria, Rib)}
3. RANK TRANSFORM HOTELLING TEST

or {Corr(Ria, ij)) are the same for all a and b. Therefore the
In Section 2 the condition of no treatment effects was simple covariance matrix (2.1) for the mean ranks is no longer
xpressed as exchangeability in the joint distribution. The applicable, and we instead use an estimated covariance matrix §/n.
symptotic distribution theory required at least a simple where S has entries

orrelation structure for the {Ria}' so that (2.1) holds.

eaver, most studies are primarily concerned with whether the = (Ria_ R a)(kih

[ o =]

Sab -R h)/(n—t+l).

arginal distributions have similar locatlions, even if more i=1

tringent assumptions about the joint distribution do not hold. Suppose that conditions hold under which R is asymptotically

5r instance, suppose that the subjects must receive the normal as n + @, Let v = ER and

reatments in a certain time order. Then even if there 1is no

reatment effect in some average sense (such as identical {Er _}),

—
I
o
o
o

sservations closer together in time may be more strongly
srrelated. Hence, if we mainly require the ability to detect
|fferences in marginal location, we might prefer a statistic

ose null distribution applies more generally than under compound
mmetry—type conditions. In this section we construct a test 1in

‘The null hypothesis Hy: G1 Eaws S Ct implies that Cv = 0 and
yich lack of treatment effects Is expressed as the broader ‘

'pothesis Hy: Cl 2...5 G_.

- .y - d
n(er)“(csc)ler — X2 . (3.1)
For the {xij}‘ there are alternatives to repeated measures

I0VA for which one can make comparisons of treatment means We use the adaptation of this statfistic that corresponds to the

thout using such strong null conditions. For instance, the rank version of the Hotelling statistic for the [xia}‘ namely

telling test for a single multivariate mean can be used to

mpare a vector such as (X ;=X ,, X 57X 4,..., x.t—l-x.t) to the Fy = ("/(t—l))(ci)‘(csc‘)'lcﬁ . (3.2)
11 value of 0. Issues pertaining to the choice between the

OVA and multivariate approaches are discussed in detail in Koch Following the Iman, Hora and Conover suggestion of treating Fp as
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an approximate F statistie with dfl =t -1 and df2 = (t~])(n—l),

we recommend treating FH a8 an approximate F statistic with qfl -

t-1 and df2 = n=t+l. Our simulations involving tail percentage

points haze indicated that this is 4 reasonable approximation.
Let G = g Ca/t, and let p~ = (“l""'ut) with W, = Ea(xia).
The components of Y provide descriptions of the degree to which
the {Ga} have different locations. The value [ Elves the
probability that a randomly selected observation on treatment a {g
larger than an Independent observation selected at random on .one
of the t treatments. Under either the marginal homogeneity or
exchangeability null hypotheses, T -5, and both the rank
transformed Hotelling and ANOVA statistics are designed to detect

whether at least one u, # .5,

The rank transformed Hotelling statistic and the rank
transformed ANOVA statistic satisfy Fy = FR when t=2. Under Hp:
Gy 2...% G, with t>2, though, (t—])FR may no longer have a chi-
square asymptotic distribution, but (t—l)FH would. Thus, the Fp
statistic could be inadequate if we are mainly concerned with
departures from this broader null hypothesis. Similarly, under
marginal homogeneity the t! possible Friedman rankings for each
subject need not be equally likely, so the Friedman test 1ig
inappropriate. For instance, when t=2, HO: C! = Gz does not imply
that P(xil p ng) P(Xil < xiZ)' so for many joint distributions
the Friedman test has probability of rejection converging to one
as n * = even though there is marginal homogeneity.

There are many theoretical questions that are suggested by
the rank transformed Hotelling statistic. We conjecture that the

following results hold quite generally:
. Under the exchangeability null hypothesis, F, - F._ 4 0.
2. The vector E converges {n probability to T

3. Asymptotic 100(1-a)z Scheffe-type simultaneous confidence

Intervals for contrasts of the form b”y are given by

o s Fetd P s

14

a,t-1,n-t+] /(N+1)

2 = —_ - -
where T a,t-1,n-t+] (n-1)(t I)Fa,t—l,n—t+l/(n t+l). (See
Morrison 1976, p.147, for an analogous reSult for the {xia))

4. The correlation between Rya @nd Ry, converges asymptotically

to Corr(a(xia), E(Xib))-

5. lUnder Hj: Gy =...2 G.» the covariance matrix of vn (E =+ 5)
converges asymptotically to the matrix with awbch element
ps(xia, Xib)/!2, where ps(...) denotes the Spearman

correlation.

Further research is needed to find conditions under which these
conjectures hold and under which R 1s asymptotically normal and

the null distribution given in (3.1) holds.

4. MARGINAL HOMOGENEITY FOR ORDERED CATECORICAL DATA

Midranks are used in the formulas presented above whenever it
is not possible to fully rank the observations. In the extreme
(fully discrete) case, the observations are made on a scale
consisting of ¢ ordered categories. Then the data on the t
repeated measurements are summarized by counts in a ¢ cross-
classification table, and different formulas are appropriate for
testing marginal homogeneity. For i = (il,...,it), let l“il
and {pi} denote the population and sample cell proportions.ﬁ The

null h;pothesis of marginal homogeneity 1is expressed as

HO: n = L,. = ﬂ++-'.+i, i=1l,400,05

i+...4

where "i4...4 1s the proportion in the 1th category of the first
marginal distribution, LT PO is the proportion in the ith
category of the second marginal distribution, and so forth.

Koch et al. (1977) proposed several statistics for testing
this and other hypotheses for categorical repeated measures. They

argued that this hypothesis of marginal homogenelity is often of



.

rreater practical relevance than the more structured one of
symmetry (wi = n, whenever j is a permutation of 1) in cell
:roportions? For ordinal classifications, they gave a statistic
-hat detects differences in marginal means, when a fixed set of
;cores is assigned to the ordered categories. Here, we also
‘ormulate a test sensitive to inequalities in means of marginal
listributions. The ridit scores for our statistic are data-based
-ather than pre—assignéd, however, and are analogous to the rank
icores for the statistics in the previous sections. The ridits
\re average cumulative probabilities for an average marginal
{stribution; that 1is, they are related to midranks calculated on
n ordered cateporical scale. See Bross (1958) for an
ntroduction to analyses using ridits.
Let 5 denote the distribution function corresponding to the
probabilities {(my ——  +...t rr+_“+1)/t,...,(nc_.__._+ +oout

)/t}, and denote its corresponding values by (G(1),...,

i a1
(e)=1). Let s, = [G(i-1) + G(i)]/2, i=1,...,c, where G(0) = 0.

he {Si] are ridit scores for the average marginal distribution.
c

he mean ridit score for margin 1 is b= 151 TLIPR and
imilarly mean ridits {ul,...,ut} can be defined for each

&
argin. Analogous mean ridits [r1 = iil 51P1+...+""] apply to

he sample. The following properties hold for the mean ridits:

. Marginal homogeneity implies u; =...= U, = 3.
1 t
Cu =t L u.(b)’ where Ma(p) 1s the mean ridit for margin a

when the ridits are calculated using the distribution in

margin b.

t
. L p/t=.5.
a

a=1

. Let Xa, a=1,...,t denote independent observations from the t
marginal distributions, let T 4 = P()(a > Xb) - P(Xb > Xa), and
let 1, = b Tah/t. Then Ma(b) = (1+Tab)/2 and W, - (l+ta)/2,

b=1

oA it MR LT L e e e

In particular, Hy implies 1| =...= T, = 0. Also u, takes on
its minimum value u, = 1/2t when 1, = -1 for all b*¥a and it
takes on its maximun value up, = 1 - 1/2t when 14, = 1 for all
b*a. HNote that u, - .5 has the same sign as T, and that

Ty ™ P(X, > z) - M(Z > X,), where Z is an independent
observation from E.

S. . can be regarded as an approximation for the probability

a
that a randomly selected observation from the continuous
distribution underlying margin a exceeds an independent

observation from the continuous distribution underlying G.

For a random sample of subjects, the asymptotic normality of
the vector of sample cell proportions induces an asymptotic nqrmal
distribution for the sample version E of u, which can be used to
test Hy. Let g be the ["ij} written in column vector form, let J
= Diag(m) - mn where Diag(m) is the diagonal matrix having 1 on
the main diagonal. Let D be the txc' matrix whose ith row has the

partial derivatives of uy taken with respect to E’. Specifically,

t
=1 + sy, ~ Z s({)/t,

du, /Aan, ...
X jl ) a=1 ja

=k

where 5(1) denotes the ridit score for category j, when the 19

marginaladistrtbution alone is used for forming the ridits.
By the delta method, the asymptotic covariance matrix

of /;(E—H) is DJD”. For the (t-1)xt matrix of contrasts C,

C(E_E),is asymptotically normal with covariance CDED'C'. The

hypothesis of marginal homogeneity can be tested by

- Aca -1 _
n(CE)“(cpp°C’) I, (4.1)
where D and E are D and E calculated for the sample
proportions. This statistic has an asymptotlc null xf_l
discribution. It also has the same form as (3.1) for continuous

data, and it 1s a generalization of a statistic presented by




'Afrestl (lY83) for the case t=2.

5. POWER COMPARISONS

The Monte Carlo study conducted by Iman, Hora, and Conover
(1984) indicated that their ANOVA rank transform statistic has
superior power to the Friedman statistic for many distributional
forms. Their simulations did not consider the effect of the
correlation between treatments on this power. We wondered whether
a sufficiently high'correlation might provide more of an advantage
to the Friedman approach of using only within-block rankings. We
were also curious about how poorly the ANOVA rank transform
statistic and the Friedman statistic would perform 1f there were
marginal homogenelty but not exchangeability. In particular, we
wanted to see whether the Hotelling-type rank transform statistic
would be much superior to these statistics in terms of matching
the nominal a-level, since its asymptotic distribution is
appropriate even for this broader condition.

To help answer these questions, we conducted some simulations
for a model in which 51 has a multivariate normal distribution

with Exia =m, correlation Pab between xia

and xib' and unit
standard deviations. We conducted 10,000 simulations for a = .05

level tests at all combinations of the following:
t=2 and t=5

|b-a
T for t = .2 and T = .8

gy =T and Pap =
n = 10, 30, 50
Myyp = My = 4, 1=1,...,t-1 with A=0 and A=.316 for t=2, A=.086

for t=5

The A values were chosen so that the powers would range from about
.05 to .95 over the conditions indicated. These simulations were

done using the GCONSM random number generator in the IMSL on IBM
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3081D and IBM 3033N computers. Approximate powers were recorded
for the regular ANOVA F statistic (F), the Friedman statistic
(FF), the ANOVA rank transform (FR), and the Hotelling rank
transform (FH).

Table 1 contains the estimated powers for the condition
{pab = 1}. For all these cases, the true size of the test is very
close to (within .01 of) the nominal value of .05 for F, Fp» and

F However, for t=2, the Friedman statistic was overly

H*
conservative for n=10 and overly liberal at n=50. For this latter
case it 1s clearly much less powerful than the other statistics.
The poorness of the null F approximation for the Friedman
statistic was also observed by Iman, Hora, and Conover. The
Friedman test did not have higher power than the ANOVA rank
transform even in what one would expect to be its most favorable
case —— t=5 and 1=.8. 1In fact, the ANOVA rank transform test
performed nearly as well as its parametric analog in all these
cases. The Hotelling rank transform statistic satisfies F“ = FR
for t=2. Not surprisingly, for t=5 it fares somewhat more poorly
than FR' since it loses degrees of freedom from not exploiting the
simple correlation structure. However, even then, it is
comparable in power to the Friedman approach, the discrepancy for
the case 1=.8 and n=10 perhaps explained by the larger actual a-
level for FF'

Table II contains results for the autoregressive structure

Pap = le—al for t=5. Since the exchangeability condition does

" not hold in this case, the null distributions of the B; FR' and FF

statistics may be poorly approximated by the F distribution. For
1=.2 the violation is very weak and the pattern of results is
similar to that obtained when all Pap = .2. When 1=.8 the actual
a-levels depart more from the nominal level and it {s less
appropriate to compare non-null powers. However, each statistic
seems to be relatively robust, particularly FF‘ Although

asymptotically only FH is guaranteed to have .05 a-level, in this

8imulation only minor improvement is achieved by using it.




Table I Table II
APPfUKimate* Powers when the Underlying Distribution is t- Approximate* Powers when the Underlying Distribution is t-
variate Normal with Means Mgy = my A, Unit Variances, and
Treatment Correlations p_, = T. variate Normal with Means my_, = m; + A, Unit Variances, and
—_ T Treatment Correlations Pab = le-al.
t _n__Test b=0 A = .3155 4=0 A = .3155 : ' Eoan E= i
; 10 F .0489 .1031 L0479 .2905 i : t _n  Test 4=0 A = .0855 4=0 4 = .0855
FR=FH L0481 L1042 L0467 .2553 5 10 F .0550 .0995 .0758 .1915
Fy L0182 L0456 .0208 _1349 FR .0571 .0979 L0745 L1762
Fy .0536 .0737 .0448 .0690
30 F .0510 .2596 L0494 «7519 FF .0526 .0886 L0640 L1455
FREFH .0520 L2447 L0491 .6954
Fp L0408 L1676 L0403 .5533 30 F .0531 .2022 .0736 .k?96
FR .0521 .1927 .0702 L4017
50 F L0485 L4008 L0461 .9369 ; Fy .0473 L1445 L0473 L1942
FR=FH .0483 .3855 0467 .8998 ; FF .0487 .1619 .0588 L3100
Fp .0664 .3234 0643 .8296 !
( 50 F .0504 «3195 L0716 .6254
i n Test A=0 A = .0855 A=0 A = .0855 FR L0502 2% L0705 5884
S f 10520 ERRS s Ee ; Fy L0496 .2331 L0465 .3294
Fe .0535 .0985 .0520 .2343 i FF L0407 &Hi4 L0565 4707
Fy .0518 .0805 L0431 L1334 i
Fr -0534 <0919 <0539 -2210 f * based on 10,000 replications
30 F .0498 L2162 .0478 L7402
Fp .0492 .2038 .0482 .6795 ;
Fy L0451 .1893 L0431 6062 3 As in the parametric case, FH would be expected to be
Fp L0486 . 1825 .0475 .6343 relatively more advantageous than Fp as the correlations become
more disparate. For instance, we conducted simulations for t=5 in
50 F .0487 .3583 L0462 L9454 which p , = P13 = Ppy = .8 and all other Pap = O when atb. For
Fr L0467 .3389 0477 <2115 n=50 the estimated probabilities of rejection for the null case
Fi -0502 -3163 -0475 -8869 were .087 for F, .084 for Fp, .048 for Fy, and .052 for F,. For
FF +0485 -2891 -0469 -8783 the nonnull case 4=,086, the powers were .462 for F, .443 for FR'

* based on 10,000 replications .626 for FH' and .544 for FF' Hence, for this structure, the

]
NOTE: F = ANOVA F statistic, Fp = Iman et al. rank statistic, Hotelling test seems to perform best.

F,, = Hotelling-type rank statistic, FF = Friedman statlistic.

H In summary, in our simulations the Fo and Fy, statistics




. .
behaved much like their parametric analogs. When t=2, F_ came
R
much closer than the Friedman statistic to matching the
4
level, and it appeared to have better power. It maintained a

slight power advantage even when the number of treatments or the

correlation increased. When the treatment correlations are highly

irregular, the FH statistic has better asymptotic justiffication

than FR‘ and for thisrcase it may be desirable to develop
adjustments. for FR analogous to those sometimes used in the
parametric case. Also, primary interest in marginal effects
dictates that FH is more appropriate than the Friedman statistic,
#hich has asymptotic probability of rejection equal to 1 for some
loint distributions that exhibit marginal homogeneity. The
results in this paper glve further support to the arguments
>resented by Iman, Hora, and Conover (1984) against unquestioned

1se of the Friedman test for rank analysis of repeated measures
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