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Abstract

This note shows three cases in which a considerable loss of e�ciency can result from as-13
suming a parametric distribution for a random e�ect that is substantially di�erent from the true
distribution. For two simple models for binary response data, we studied the e�ects of assuming15
normality or of using a nonparametric �tting procedure for random e�ects, when the true distri-
bution is potentially far from normal. Although usually the choice of random e�ects distribution17
has little e�ect on e�ciency of predicting outcome probabilities, the normal approach su�ered
when the true distribution was a two-point mixture with a large variance component. Likewise,19
for a simple survival model, assuming a gamma distribution for the frailty distribution when the
true one was a two-point mixture resulted in considerable loss of e�ciency in predicting the21
frailties. The paper concludes with a discussion of possible ways of addressing the problem of
potential e�ciency loss, and makes suggestions for future research.23
c© 2003 Published by Elsevier B.V.
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1. Introduction

Recently there has been increasing use of random e�ects in modeling. Much of this27
has been in the context of the generalized linear mixed model (GLMM) for repeated
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measurement and other forms of clustered data and in the modeling of clustered sur-1
vival times. The distribution of the random e�ect is usually chosen for computational
convenience. In linear models with normal errors the normal distribution simpli�es3
calculations. Due partly to the relationship with these linear models and its ease of
generalization to multivariate random e�ects, the random e�ects in GLMMs are also5
usually assumed to be normal random variables. In survival analysis, if the random
e�ects, called frailties, are assumed to be gamma random variables, then the predicted7
frailties as well as the likelihood itself have closed-form expressions. While alternative
random e�ect distributions have been proposed and implemented in some cases, little9
research has investigated the consequences of misspecifying that distribution.
First, consider the GLMM. Let yij denote observation j in cluster i, i = 1; : : : ; I ,11

j=1; : : : ; ni. Let xij denote a column vector of values of explanatory variables for that
response, which serve as coe�cients of �xed e�ects in the model, and let zij denote a13
corresponding vector of coe�cients of random e�ects. Let ui denote a vector of random
e�ect values for cluster i. Let �ij = E(yij|ui). The linear predictor for a GLMM has15
the form

g(�ij) = x′ij� + z
′
ijui ; (1)

where g(·) is a link function. Conditional on ui, the model assumes that {yij; j =17
1; : : : ; ni} are independent.
The random e�ect vector ui in a GLMM is assumed to have a multivariate normal19

distribution N (0;�), with covariance matrix � depending on unknown variance com-
ponents. See, for instance, Breslow and Clayton (1993) and Wol�nger and O’Connell21
(1993). There is also some literature on modeling using non-normal random e�ects.
One approach uses conjugate mixture models (Lee and Nelder, 1996). Another ap-23
proach is nonparametric, with a mixture distribution concentrated on a set of mass
points of unspeci�ed number and location (e.g., Heckman and Singer, 1984; Aitkin,25
1999).
Despite its popularity and attractive features, the normality assumption can rarely27

be checked very closely. For instance, Verbeke and Molenberghs (2000, Section 7.8)
noted that under a normality assumption for random e�ects, the predicted random ef-29
fects tend to look normally distributed even when the true random e�ects are generated
from a highly non-normal distribution. An obvious concern of this or any parametric31
assumption for the random e�ects is whether there are any harmful e�ects of misspec-
i�cation.33
In an alternative use of random e�ects, the frailty model starts with the Cox pro-

portional hazards model and assumes that the random e�ect has a multiplicative e�ect35
on the hazards. Let tij denote the jth failure in cluster i. The hazard is modeled as

�(tij) = �0(tij)ui exp{x′ij�}; (2)

where ui, the random e�ect or frailty, is generally assumed to have a continuous37
unimodal distribution with mean one. For computational ease, the frailty distribution is
usually assumed to be gamma (e.g., Clayton, 1978; Oakes, 1982; Nielsen et al., 1992),39
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although other possibilities have been proposed such as a positive stable distribution1
(Hougaard, 1986) and the inverse Gaussian (Whitmore and Lee, 1991).
Thus far, there has been limited study about the e�ect of misspeci�cation of the ran-3

dom e�ects distribution. In survival analysis, Klein et al. (1992) surveyed the proposed
frailty distributions, applying each one to the Framingham heart study data. Although5
the di�erent frailty distributions had di�erent theoretical implications for the patterns
of association between failure times, the alternative speci�cations did not have a large7
e�ect on estimated covariate e�ects. However, these models all assumed a continuous
random e�ect with a unimodal frailty distribution. On the other hand, Heckman and9
Singer (1984) discussed a case in survival analysis in which bias does occur. Ex-
amining models for censored longitudinal economic data, they showed that estimates11
of �xed parameters in a particular Weibull regression model were highly sensitive to
misspeci�cation.13
Less dramatic evidence has occurred for other types of models. Neuhaus et al.

(1992) investigated this for a logit model with a random intercept. They argued15
that there is little bias in the estimation of the �xed regression e�ects but some
bias in the mean of the random intercepts when the random e�ects distribution is17
nonsymmetric. They also suggested that standard error estimates are reasonably well
behaved under misspeci�cation. See Chen et al. (2002) for mention of other, more19
recent, papers that made the same conclusion for other models. However, Heagerty
and Zeger (2000) argued that regression parameters in random e�ects models have21
bias that is more sensitive to random e�ects assumptions than their counterparts in
the corresponding marginal models. To illustrate this, they considered a violation23
of the usual form of model in which the variance of the random e�ects depends
on values of covariates. They concluded that between-cluster e�ects may be more25
sensitive than within-cluster e�ects to correct speci�cation of the random e�ects
distribution.27
Despite some con�icting evidence, the conventional wisdom among data analysts

seems to be that the choice of random e�ects distribution is not crucial to quality29
of inference about regression e�ects. The purpose of this note is to show, however,
that this may not be so when there is a severe polarization of subjects in the form31
of a binary latent class model. We observed that misspeci�cation of this form in the
random e�ects distribution has the potential for a serious drop in e�ciency in the33
prediction of random e�ects and the estimation of other parameters. This is illus-
trated with simulations based on two simple logit models (Sections 2 and 3) and one35
failure time hazards model (Section 4). Although usually the choice of random ef-
fects distribution had little e�ect on e�ciency, the parametric approach su�ered when37
the true distribution was a two-point mixture with a large variance. In the exam-
ple presented in Section 3, even a within-cluster �xed e�ect is poorly estimated in39
this case.
Since the random e�ects distribution cannot be simply checked, this brings up the41

important issue of how to guard against the potential loss of e�ciency if the true
random e�ects distribution is quite far from the assumed one. We describe some pro-43
posals for addressing this. This is an important but apparently di�cult issue to address
in future research.
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2. Random e�ects model for proportions1

The �rst example is a simple one-way random e�ects model for binary data. In
cluster i, conditional on ui, yij is a Bernoulli random variable with expectation �i3
satisfying

logit(�i) = �+ ui; i = 1; : : : ; I; j = 1; : : : ; n; (3)

where E(ui)=0 and Var(ui)=�2. Conditional on ui,
∑

j yij has a binomial distribution5
with n trials and parameter �i = exp(� + ui)=[1 + exp(� + ui)]. We simulated samples
from this model for all combinations of I = 10 and 30, n = 10 and 30, � = 0 and7
1.0, and � = 0, 0.5, and 1.0, and for various distributions for ui, including normal,
uniform, exponential (shifted so E(ui) = 0), binary with probability 0.5 at each point,9
and degenerate at a single point (i.e., no random e�ect and thus I identically distributed
binomials). We focused primarily on how well one could estimate � and predict {�i}11
(given ui) under the usual normal random e�ects assumption and with a nonparametric
approach (Aitkin, 1999).13
For simulation k, k = 1; : : : ; 10; 000, let �̂k , �̂k , and {�̂ik ; i = 1; : : : ; I} denote

the ML estimates of � and � and the predictions of {�ik} based on the estimated15
posterior means of {�ik} using the posterior distributions of {uik} given the data. We
computed the mean, standard error of the mean, and median of {|�̂k − �|}, {|�̂k − �|},17
and {�i|�̂ik − �ik |=I}. The relative sizes of the medians were similar to the means for
normal and nonparametric �tting schemes, and are not reported here. However, there19
is a caveat regarding what these sample mean distances estimate. The nonparametric
�tting has a positive probability of in�nite mass points; thus E|�̂k − �| does not exist.21
Likewise, �̂k can be in�nite even for the model without a random e�ect. The probabil-
ity of such behavior is very small for the values of n and I used. Thus, we report these23
sample means as a measure of estimation quality, keeping in mind that they actually
estimate expected values conditional on estimates being �nite. The standard errors of25
the means were nearly all less than 0.003.
Table 1 shows some results when � = 0 and � = 1:0, representing moderate het-27

erogeneity. The overwhelming impression Table 1 conveys is that the random ef-
fects assumption has little in�uence. Assuming normality does not hurt when the29
true distribution is far from normality, and using a nonparametric approach when the
true distribution is normal does not result in much e�ciency loss. In the latter case31
closer analysis reveals that the nonparametric predictions have absolute deviations from
true values averaging about 5–10% higher than ones based on the normal approach.33
The exceptions where results di�er considerably (by more than 20%) for the two ap-
proaches are the cases highlighted with ∗. In two cases for which the true distribution35
is a two-point mixture and n= 30, the normal approach lost considerable e�ciency in
predicting {�ik}.37
For �=0:5 (with �=0), a weaker degree of heterogeneity, for all cases the results for

normal and nonparametric �tting were similar. The e�ciency gain for the nonparametric39
approach was then minor when the true distribution was two-point. When �=0, the true
model is the �xed e�ects one in which all In trials are identical with probability 0.5.41
In that case, not reported in these tables, results were also similar. For the runs with
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Table 1
Mean distances of estimates from parameters in model (3) with � = 0, � = 1:0

I n True Assumed |�̂− �| |�̂i − �i| |�̂ − �|
10 10 Normal Normal 0.31 0.11 0.36

Nonparametric 0.31 0.12 0.36
Uniform Normal 0.32 0.10 0.32

Nonparametric 0.32 0.11 0.31
Exponential Normal 0.30 0.10 0.40

Nonparametric 0.29 0.11 0.44
Two-point Normal 0.34 0.10 0.29

Nonparametric 0.32 0.09 0.25
10 30 Normal Normal 0.28 0.06 0.26

Nonparametric 0.27 0.07 0.23
Uniform Normal 0.28 0.06 0.20

Nonparametric 0.28 0.07 0.18
Exponential Normal 0.26 0.06 0.34

Nonparametric 0.25 0.07 0.31
Two-point Normal 0.29 0.062a 0.14

Nonparametric 0.28 0.037a 0.12
30 10 Normal Normal 0.18 0.10 0.19

Nonparametric 0.18 0.11 0.20
Uniform Normal 0.19 0.10 0.18

Nonparametric 0.18 0.10 0.18
Exponential Normal 0.18 0.10 0.22

Nonparametric 0.17 0.10 0.26
Two-point Normal 0.17 0.06 0.08a

Nonparametric 0.18 0.07 0.14a

30 30 Normal Normal 0.16 0.06 0.13
Nonparametric 0.16 0.07 0.13

Uniform Normal 0.16 0.06 0.11
Nonparametric 0.16 0.07 0.10

Exponential Normal 0.15 0.06 0.19
Nonparametric 0.15 0.06 0.19

Two-point Normal 0.17 0.061a 0.08a

Nonparametric 0.16 0.023a 0.06a

aCases with a di�erence of 20% or more.

� = 1:0, the distribution of probabilities has mean above 0.5 and is skewed. Similar1
results occurred. The only case with a major di�erence was predicting probabilities
when the distribution was two-point and � = 1:0 with n = 30, in which the estimated3
average distance between �̂i and �i was less than half as large for the nonparametric
approach. For some cases, however, the nonparametric approach gave poorer estimates5
of the variance component.
To investigate the indication that for predicting probabilities the two-point distribution7

tended to favor the nonparametric approach more as � and n increase, we also simulated
other combinations with larger values of � and n. Table 2 shows results for n=30 and9
100 and for �=1:0 and 2.0, when I =30 and �=0. In all these cases with two-point
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Table 2
Mean distances of estimates from parameters in model (3) for n = 30 and 100 and � = 1:0 and 2.0, when
� = 0 and I = 30

� n True Assumed |�̂− �| |�̂i − �i| |�̂ − �|
1.0 30 Normal Normal 0.16 0.06 0.13

Nonparametric 0.16 0.07 0.13
Two-point Normal 0.17 0.061a 0.08a

Nonparametric 0.16 0.023a 0.06a

1.0 100 Normal Normal 0.16 0.04 0.12
Nonparametric 0.15 0.04 0.11

Two-point Normal 0.12a 0.032a 0.12a

Nonparametric 0.15a 0.010a 0.04a

2.0 30 Normal Normal 0.31 0.06 0.29
Nonparametric 0.29 0.07 0.27

Two-point Normal 0.50a 0.045a 0.49a

Nonparametric 0.30a 0.013a 0.09a

20.0 100 Normal Normal 0.27 0.04 0.27
Nonparametric 0.28 0.04 0.24

Two-point Normal 0.30 0.014a 0.75a

Nonparametric 0.30 0.007a 0.06a

aCases with a di�erence of 20% or more.

distributions, the nonparametric approach performed substantially better, while losing1
relatively little e�ciency if the random e�ects distribution is truly normal. In some
cases the nonparametric approach also gave much better estimates of the variance3
component.
For this model, ML �tting of the nonparametric random e�ects approach usually5

converged with relatively few mass points. In fact, �tting a model having only two
mass points often gave results quite similar to the full nonparametric approach.7

3. Random e�ects model for log odds ratio

The second example refers to estimating the mean log odds ratio for several 2 ×9
2 contingency tables. Here, (yi1; yi2) are each based on n trials in partial table i.
Conditional on a random e�ect ui, they are independent binomials with log odds ratio11
� + ui. Speci�cally, conditional on ui, yij is bin(n; �ij) where

logit(�i1) = �+ (� + ui)=2; logit(�i2) = �− (� + ui)=2 (4)

and where E(ui) = 0 and Var(ui) = �2.13
This model for binary responses is useful when heterogeneity occurs among odds

ratios in di�erent studies or for di�erent clusters of observations. For instance, in15
comparing two treatments on a binary response with data from several centers, it is
unrealistic to assume exactly the same odds ratio in each center (i.e., � = 0). Allow-17
ing �¿ 0 provides a more sensible model allowing heterogeneity (e.g., Beitler and
Landis, 1985; Agresti and Hartzel, 2000; Hartzel et al., 2001). Interest here focuses19
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Table 3
Mean distances of estimates from parameters in model (4) for various � and �, when I = 10 and n = 30

� � True Assumed |�̂ − �| |�̂ij − �ij| |�̂ − �|
0.0 1.0 Normal Normal 0.30a 0.043 0.14

Nonparametric 0.39a 0.048 0.13
Two-point Normal 0.30a 0.046a 0.10

Nonparametric 0.24a 0.038a 0.09
0.0 2.0 Normal Normal 0.54 0.044 0.24

Nonparametric 0.56 0.052 0.26
Two-point Normal 0.56a 0.045a 0.12

Nonparametric 0.21a 0.024a 0.14
2.0 1.0 Normal Normal 0.30a 0.041 0.16

Nonparametric 0.42a 0.045 0.15
Two-point Normal 0.31 0.042 0.11

Nonparametric 0.27 0.036 0.10
2.0 2.0 Normal Normal 0.56a 0.042 0.24a

Nonparametric 0.69a 0.048 0.33a

Two-point Normal 0.57a 0.041a 0.15
Nonparametric 0.26a 0.024a 0.15

aCases with a di�erence of 20% or more.

on estimating the expected log odds ratio �. This provides an overall treatment e�ect1
measure, allowing for heterogeneity in the odds ratios. In practice, � would also vary
somewhat in i, but we focus on quality of estimation of �.3
Simulations required substantially more time for this model. Also, as many as 100

quadrature points were sometimes needed to adequately approximate the log likelihood5
when � was large. For 1000 simulations, Table 3 compares ML estimates of � and
� and predictions of �ij, when � = 0 and when true random e�ects distributions are7
normal or two-point, assuming normality or nonparametric �tting. (We also considered
� = 1:0 and obtained similar results.) Standard errors of estimates of � and � are on9
the order of 0.01 or less. Again, when the random e�ects distribution is truly two-point
but one assumes normality, considerable loss of e�ciency can result when � is large.11
Results for the expected log odds ratio � are somewhat more dramatic than for {�ij}.
We also considered bias in estimating � for this model. Both approaches performed13

well, and results are not shown here. When �=0 neither estimate is biased (conditional
on �nite estimates) by the symmetry of the model, and when � = 2:0 the normal15
estimates performed well even when the true distribution was a two-point mixture.

4. Frailty model for survival17

The �nal example entails estimation of a simple version of the hazard function (2)
for survival data. Using the notation given previously, in cluster i, conditional on ui,19
tij is assumed to be a random failure time with constant hazard function

�i(t) = �ui; i = 1; : : : ; I; j = 1; : : : ; n: (5)
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Table 4
Mean distances of estimates from parameters in model (5) with � = 2:0 and � = 1:0

I n True Assumed |�̂− �| |�̂i − �i| |�̂ − �|
10 10 Gamma Gamma 0.32 0.46 0.34

Nonparametric 0.32 0.53 0.38
Uniform Gamma 0.33 0.45 0.31

Nonparametric 0.33 0.49 0.29
Two-point Gamma 0.34 0.47a 0.28

Nonparametric 0.33 0.38a 0.24
10 30 Gamma Gamma 0.27 0.28a 0.26

Nonparametric 0.26 0.37a 0.29
Uniform Gamma 0.28 0.28 0.23

Nonparametric 0.27 0.33 0.20
Two-point Gamma 0.29 0.28a 0.17a

Nonparametric 0.28 0.15a 0.13a

30 10 Gamma Gamma 0.18 0.44 0.18a

Nonparametric 0.18 0.49 0.24a

Uniform Gamma 0.19 0.43 0.22
Nonparametric 0.19 0.44 0.18

Two-point Gamma 0.20 0.43a 0.16a

Nonparametric 0.18 0.28a 0.13a

30 30 Gamma Gamma 0.16 0.28a 0.14a

Nonparametric 0.15 0.34a 0.17a

Uniform Gamma 0.16 0.27 0.17a

Nonparametric 0.16 0.30 0.11a

Two-point Gamma 0.16 0.27a 0.10
Nonparametric 0.16 0.06a 0.09

aCases with a di�erence of 20% or more.

We take E(ui)= 1 to ensure that the average hazard rate for the population of clusters1
is the baseline hazard �0(t). For simplicity, the baseline hazard � is assumed constant
for all t. In frailty models, ui is usually assumed to be a gamma random variable. As3
in Section 2, we use simulation to study how well � is estimated and �i is predicted
assuming both a nonparametric and parametric form for the mixing distribution under5
di�erent true mixing distributions. No censoring was included in the simulations. For
simulation k, k = 1; : : : ; 10; 000, �̂k and �̂k denote the estimated population hazard and7
frailty standard deviation, and �̂ik represents the predicted frailty for individual i.
Table 4 summarizes results for � = 2:0 and � = 1:0, showing e�ects of I and n9

when they equal 10 and 30. Standard errors for sample means were estimated via
Monte Carlo to be less than 0.004 for |�̂ − �| and |�̂ − �| and 0.002 for |�̂i − �i|.11
Similar to results for the simple logit model of Section 2, misspeci�cation of the
frailty distribution does not result in e�ciency loss when estimating the average hazard.13
However, misspeci�cation of the frailty distribution did result in e�ciency loss in
estimating the predicted values and standard deviation. This is especially true when15
the �tted frailty distribution is gamma and the true distribution is a two-point mixture,
and somewhat less so when the frailty distribution is �tted nonparametrically when the17
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Table 5
Mean distances of estimates from parameters in model (5) for various values of �, when �=2:0 and n=I=30

� True Assumed |�̂− �| |�̂i − �i| |�̂ − �|
0.5 Gamma Gamma 0.09 0.24 0.09

Nonparametric 0.09 0.27 0.10
Two-point Gamma 0.09 0.25a 0.07

Nonparametric 0.09 0.19a 0.07
0.75 Gamma Gamma 0.12 0.27 0.11

Nonparametric 0.12 0.32 0.13
Two-point Gamma 0.13 0.26a 0.08a

Nonparametric 0.12 0.12a 0.06a

1.0 Gamma Gamma 0.16 0.28a 0.14a

Nonparametric 0.15 0.34a 0.17a

Two-point Gamma 0.16 0.27a 0.10
Nonparametric 0.16 0.06a 0.09

1.5 Gamma Gamma 0.26 0.32a 0.26
Nonparametric 0.27 0.39a 0.31

Two-point Gamma 0.24 0.28a 0.25a

Nonparametric 0.23 0.08a 0.07a

1.75 Gamma Gamma 0.45 0.46 0.47
Nonparametric 0.47 0.51 0.52

Two-point Gamma 0.28 0.28a 0.48a

Nonparametric 0.27 0.09a 0.08a

aCases with a di�erence of 20% or more.

true distribution is gamma. The loss in e�ciency increases when the cluster size n1
increases. When the true frailty distribution was uniform, nonparametric �tting resulted
in better estimation of the standard deviation of the mixing distribution when both the3
number of clusters and the cluster size were large. Yet, there was a slight tendency
for predicted values from the �tted gamma distribution to be closer to the true random5
e�ects than predicted values from the nonparametric model.
Table 5 presents additional results, examining the e�ect of the size of � when the7

number of clusters and the size of each was �xed at 30. When the true frailty distri-
bution is two-point, as � increases �tting a gamma distribution results in increasingly9
poorer e�ciency. This e�ciency loss occurs in predicting the random e�ects and even
more so in estimating �. Nonparametric �tting of the frailty distribution when the true11
distribution is gamma also results in some e�ciency loss in estimating � and pre-
dicting hazards. However, the e�ciency loss is much less severe than in the reverse13
setting.
These results are consistent with those of Heckman and Singer (1984), who found15

that complete characterization of the mixing distribution was di�cult, even when the
mean and standard deviation could be accurately estimated. However, when modeling17
the mixture distribution nonparametrically, poor estimation of the mixing distribution
did not translate into poor estimation of the corresponding marginal distribution of19
failure times.
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5. Proposals for addressing misspeci�cation issues1

In the three examples of models in this article, we have seen that harmful e�ects
can result from assuming a continuous random e�ects distribution such as the normal3
or gamma when actually the subjects fall into one of two quite distinct classes. In such
cases, a more appropriate model is a type of latent class model, assuming that subjects5
are a mixture of two types. This suggests that in posing a model, it is wise to give
some careful thought to whether such a binary mixture distribution is plausible. In some7
applications it may arise naturally, when subjects vary according to an unmeasured
binary factor such as gender or genetic type.9
For instance, Follman and Lambert (1989) analyzed data on the e�ect of the dosage

of a poison on the death rate of a protozoan of a particular genus. They assumed that11
there were two varieties (unmeasured) of that genus. Thus, they modeled the probability
of death at dosage level x as equal to ��1(x)+(1−�)�2(x), where logit[�i(x)]=�i+�x13
and � is unknown. The �t of this model to 426 binary observations at 8 dosage levels
(summarized by a deviance of 3.4 with df = 4) was much better than that of a single15
logistic regression model (deviance of 24.7 with df =6), which is the special case with
�= 1. Their example illustrates the potential discrepancy of results and e�ciency loss17
with a normal random e�ects assumption when a two-point mixture model �ts better.
The two-point mixture model has �̂=124:8 with SE=25:2, for which �̂=SE=4:9. The19
normal mixture model has �̂ = 65:5 with SE = 19:5, for which �̂=SE = 3:4.
In the absence of a theoretical framework suggesting whether the normal or a bi-21

nary approach may be more valid, the obvious question arises about what to do to
diagnose and to protect oneself against potential e�ects of misspeci�cation. In particu-23
lar, the fact that the two-point distribution presented problems for the ordinary normal
approach with the three simple models discussed in this paper suggests that it is also25
likely to be problematic for a wide variety of other models. In this section, we sum-
marize some proposals for addressing this issue that may be worth studying in future27
research.

5.1. Always use a nonparametric approach29

The safest approach might seem to be always to use a nonparametric rather than
a parametric approach for the random e�ects distribution. Although the nonparametric31
approach is discrete, it can well approximate a normal distribution by using several
mass points, yet it can also accommodate the binary mixture with large variance as a33
special case.
The nonparametric random e�ects approach does seem promising when the true ran-35

dom e�ects distribution is plausibly binary. However, it has its own disadvantages. It
can lose some e�ciency when a parametric assumption would not be badly violated.37
Our simulation results also showed that its variance component estimate may be poor.
In addition, in most applications the number of mixture mass points is unknown. Thus,39
standard asymptotic theory does not apply, and model comparison is awkward. Also,
identi�ability problems can arise (e.g., Follman and Lambert, 1991). Finally, this ap-41
proach is not as readily adapted to multivariate random e�ects modeling as the normal
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distribution, for instance to provide a simple multivariate mixture model that has a1
common variance and common correlation parameter.

5.2. Use a mixture of normals3

Some authors have suggested replacing a normal random e�ects distribution by a
�nite mixture of normals (e.g., Everitt and Hand, 1981; Magder and Zeger, 1996;5
Verbeke and Molenberghs, 2000). For instance, a model with a random intercept that
might normally be assumed to have a N (�; �2) distribution might instead be assumed7
to have a �N (�1; �2) + (1 − �)N (�2; �2) distribution for some mixture parameter �.
An appealing aspect of this proposal is that it can accommodate in a simple manner a9
wide variety of shapes. In particular, it includes the extreme deviation from normality
of a two-point mixture distribution as the special case of the mixture of two normals11
with �=0. Thus, this would seem to protect against the occurrence of this problematic
distribution, for which this paper observed possible e�ciency loss for all three models13
with the normal assumption.
We tried this approach with the Follman and Lambert (1989) example. This is a15

case where the two point-mixture model has a large estimated variance, and one would
hope that the mixture of normals approach would �t much better than a single normal17
random intercept. The Follman and Lambert two-point mixture model gave �t

�̂(x) = 0:34�̂1(x) + 0:66�̂2(x)

with19

logit[�̂1(x)] =−196:2 + 124:8x; logit[�̂2(x)] =−205:7 + 124:8x:
By comparison, a logistic random intercept model for which the random intercept
was assumed to follow a mixture of normals had estimated mixture probability of21
0.34 for a N (−196:4; 0:3) component and estimated mixture probability of 0.66 for
a N (−205:7; 0:3) component, with estimated slope of 124.8. With the very small es-23
timated variance component, the �t is essentially the same as the two-point mixture
model, which �ts the data much better than an ordinary logistic-normal GLMM. The25
maximized log-likelihoods were −177:4 for the two-point mixture model and the mix-
ture of normals model, compared to −187:1 for the single normal mixture. We �tted27
the mixture-of-normals random intercept model using EM with Gauss–Hermite quadra-
ture. Fitting was sensitive to starting values, and we checked results using marginal29
maximization via simulated annealing.
These results are very promising for the mixture of normals approach. To get further31

con�rmation, we tried this approach for the model for the log odds ratio of Section
3, which Table 3 summarized. When the true distribution was two-point, we hoped33
this approach would give results similar to those with nonparametric �tting. However,
in the simulation study the mean absolute distance of �̂ from � was very similar to35
that obtained by assuming normality. Moreover, the estimate of � tended not to be
as good as with the normal approach, both in this case and when the true random37
e�ects distribution was normal. We found this disappointing, and because of it, we
do not feel we can give an unquali�ed endorsement of this approach. Further research39
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is needed to analyze why this approach failed in this case and to see if one can1
characterize situations for which it could be expected to work as well as it seems to
for the Follman and Lambert (1989) example.3

5.3. Comparing predicted residuals

For the case of the survival model, we investigated the possibility of comparing the5
predicted frailties with what we will call residual frailties. The residual frailties were
calculated separately for each individual, assuming the mean hazard from the model to7
be the true mean but assuming nothing further about the form of the random e�ects
distribution. In the current context, the residual frailty for an individual is the ratio or9
the constant hazard one would calculate for that individual if one ignored the infor-
mation from the rest of the population relative to the population mean hazard. These11
residual frailties are not shrunk towards 1.0 as the predicted frailties would be. We
considered two statistics based on comparing these residuals: (1) the average squared13
distance between these predicted and residual frailties and (2) the average of abso-
lute values of the di�erences between the estimated variance under the assumed model15
and the squared distance between the two residuals. The �rst statistic compares the
predicted e�ects under the hypothesized model with nonparametric estimates of the17
random e�ects. The focus of this statistic is whether the predicted means of the hazard
given the observed data are accurate. On the other hand, the second statistic compares19
the estimated conditional variances. The estimated variances for the predicted values
are compared with nonparametric estimates of those variances. The calculation of this21
statistic assumes that the predicted values are accurate estimates of the conditional
means for each subject.23
These two statistics were used to compare the two models �tted for the frailties in

this paper. They correctly selected the model with gamma frailty distribution over 80%25
of the time when the gamma distribution was in fact the correct distribution. However,
these statistics had di�culty when the true distribution of the random e�ects was a27
two-point distribution. For the latter case, the technique was e�ective only with cluster
sizes of at least about 45. This is too large to be useful for most applications, since29
more commonly the number of clusters is large relative to the size of the individual
clusters.31
At this stage, it is unclear how promising this approach might be with further de-

velopment, and additional research is needed. Alternatively, one can try to generalize33
methods that have been proposed for using residuals in linear random e�ects mod-
els, such as those discussed by Lange and Ryan (1989) based on weighted normal35
quantile plots of standardized linear combinations of the random e�ect predictions (see
also Houseman et al., 2002). However, as noted by Verbeke and Molenberghs (2000,37
p. 89), since these depend on the random e�ects as well as the error terms, such
plots cannot di�erentiate a wrong distributional assumption for the random e�ects or39
the error terms from a wrong choice of covariates. See Glidden (1999) and Shih and
Louis (1995) for numerical and graphical techniques for checking the adequacy of a41
gamma assumption in a semiparametric gamma frailty model that allows unspeci�ed
marginal distributions.
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5.4. Model selection criteria1

The choice of a random e�ects distribution is simply one element of the choice of a
model. Various criteria have been proposed for choosing among models, whether the3
models be nested such as random e�ects models assuming normality or assuming a
mixture of normals, or nonnested such as random e�ects models assuming normality or5
assuming an unspeci�ed distribution on a �nite number of mass points. One possible
approach would be to use one of these criteria, such as AIC, to select among a set of7
candidate models. However, the maximized likelihood refers to the marginal distribu-
tion, integrating over the random e�ects distribution, and quite di�erent random e�ects9
distributions can generate similar marginal distributions. So, for instance, it is not clear
that AIC would detect cases in which the normal random e�ects assumption is much11
poorer than the assumption of a binary random e�ect, unless the marginal �ts were
quite di�erent. It may be a more promising research problem to develop an AIC-type13
measure in terms of the conditional distribution at the random e�ects level.

5.5. Other approaches15

Alternative approaches are undergoing development currently that have promise and
that deserve attention in future research of e�ects of misspeci�cation. For instance,17
Chen et al. (1992) have adapted for the GLMM the semi-nonparametric approach of
Gallant and Nychka (1987) for which the random e�ects density belongs to a class of19
smooth densities that contains a wide variety of shapes including the normal as a special
case. In a simulation using a logit model with a mixture of normals for a random e�ect,21
this approach seemed e�ective in detecting the non-normality. However, its results were
very similar to those assuming normal random e�ects for that particular model. It would23
be interesting to see if this approach does as well as the fully nonparametric approach
when the true random e�ects distribution is binary with large variance.25

6. Summary

In summary, the conventional wisdom seems to be that the choice of random e�ects27
distribution is not crucial. This is mainly due to studies such as Neuhaus et al. (1992)
and Chen et al. (2002) and articles quoted therein. It is also because for some simple29
models, di�erent distributions yield the same ML estimate. For instance, this happens
when the model with an arbitrary mixture distribution is saturated and �ts perfectly31
for data that are consistent with the model. An example is the simple logit model
for binary matched pairs that is a special case of (4) when n = 1 in each row of33
I tables corresponding to I subjects. For it, Neuhaus et al. (1994) showed that for
an arbitrary mixture distribution, the same ML estimate occurs as with conditional35
maximum likelihood (treating {ui} as �xed e�ects and eliminating them by conditioning
on their su�cient statistics) when the sample correlation is nonnegative in the 2 × 237
table cross-classifying the two observations from each pair.
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We have seen in this paper that although the conventional wisdom is apparently often1
true, it does not always hold. It was not the purpose of this study to conduct a detailed
investigation in terms of a great variety of models. However, we have highlighted cases3
for some very simple models in which misspeci�cation can be a problem. Speci�cally,
this can happen when the mixture distribution departs dramatically from the usual5
parametric choice, in the form of a two-point distribution with large variance. Although
it is not surprising that severe misspeci�cation of a random e�ects distribution can a�ect7
quality of prediction of characteristics involving the random e�ects (such as predictions
of probabilities), we have seen that it can also a�ect �xed e�ects (e.g., � in Table 3).9
Finally, the issue of modeling the random e�ects distribution in such a way to protect

against possible poor consequences of misspeci�cation is an important but possibly11
di�cult one for future research. It will be interesting to see results of research directed
toward some of the issues discussed in the previous section. In the absence of much13
guidance yet about these issues, what should a methodologist do? Lacking information
about the random e�ects distribution, a sensible strategy seems to be to use both a15
parametric and a nonparametric approach. When the results from the two approaches
di�er substantially, caution is suggested. In some cases, such as in the Follman and17
Lambert (1989) example, the nature of a suspected unmeasured variable may suggest
whether a normal or binary random e�ects distribution seems more plausible.19
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