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SUMMARY

Binary matched-pairs data occur commonly in longitudinal studies, such as in cross-over experiments.7
Many analyses for comparing the matched probabilities of a particular outcome do not utilize pairs
having the same outcome for each observation. An example is McNemar’s test. Some methodologists9
�nd this to be counterintuitive. We review this issue in the context of subject-speci�c and population-
averaged models for binary data, with various link functions. For standard models and inferential meth-11
ods, pairs with identical outcomes may a�ect the estimated size of the e�ect and its standard error, but
they have negligible, if any, e�ect on signi�cance. We also discuss extension of this result to matched13
sets. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: binomial distribution; di�erence of proportions; logit model; McNemar’s test; odds ratio;15
relative risk

1. INTRODUCTION17

Matched-pairs data often occur in studies with repeated measurement of subjects, such as
longitudinal studies that observe subjects over time. For a binary response, a 2× 2 contin-19
gency table with the same row and column categories summarizes the data. An example is
Table I, based on data from a cross-over study described by Jones and Kenward [1]. This21
table summarizes the results of a comparison of low-dose and high-dose analgesics for the
relief of primary dysmenorrhoea.23
For binary matched-pairs data, denote the number of pairs that are ‘successes’ for both

observations by a, ‘failures’ for both by d, success for the �rst and failure for the second by25
b, and failure for the �rst and success for the second by c (see Table II). A common statistical
problem with such data is to compare the probability of success for the two observations in27
a pair. McNemar’s test of equality of the marginal success probabilities uses only b and
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Table I. Example of binary matched pairs from a cross-over study reported by Jones and Kenward [1].

High dose

Low dose Success Failure Total

Success 53 8 61
Failure 16 9 25

Total 69 17 86

Table II. Notation for counts in 2× 2 table for matched pairs, with proportions in parentheses.
Column

Row Success Failure Total

Success a (p11) b (p12) a+ b (p1)
Failure c (p21) d (p22) c + d

Total a+ c (p2) b+ d n

c [2]. In �2 form it equals (c−b)2=(b+c). To many who �rst encounter this method, it seems1
counterintuitive that the ‘concordant observations’ a and d make no contribution to the test.
Common intuition is that the greater the number of identical responses, the less the evidence3
of a true di�erence. For instance, in extending the test of marginal homogeneity from matched
pairs to matched sets, Cochran [3] stated that ‘for given values of b and c, one might feel5
intuitively that signi�cance ought to be more de�nitely established if there are no cases in
which the samples give the same result than if there are a large number of such cases’.7
This note shows that, in fact, b and c provide the crucial information for such comparisons.

For many analyses that seem to incorporate a and d as well, those counts may a�ect the9
estimated size of the e�ect and its standard error. However, they have negligible impact on
its signi�cance. Speci�cally, likelihood-ratio tests use only b and c, and for �xed b and c, as11
a and d increase the Wald statistics converge to statistics using b and c alone. The result is
‘well-known’ in the context of McNemar’s test, but the purpose of this note is to review the13
issue in the broader context of models for common parameters for comparing proportions—
the di�erence of proportions, the odds ratio and the relative risk. We also discuss extensions15
of this result to matched sets and to matched pairs with multi-category responses.

2. CONDITIONAL AND MARGINAL MODELS FOR17
MATCHED-PAIRS COMPARISONS

Denote the two observations for pair (e.g. subject) i by (yi1; yi2); i=1; : : : ; n, where yit =1 is a19
success and yit =0 is a failure, t=1; 2. We consider two forms of display for the data, and two
related classes of models. The subject-speci�c form refers to a 2× 2× n table where stratum21
i has results for matched pair i. Row 1 contains yi1 in column 1 and 1 − yi1 in column 2,

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:000–000
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Table III. Representation of four types of matched pairs.

Response

Pair Observation Success Failure

1 First 0 1
Second 0 1

2 First 1 0
Second 1 0

3 First 1 0
Second 0 1

4 First 0 1
Second 1 0

and row 2 contains yi2 in column 1 and 1 − yi2 in column 2. Table III shows the four1
possible partial tables in this representation.
The second form is a population-averaged one. Averaged over the population of matched3

pairs, denote the probabilities of the possible response sequences (yi1; yi2) by �11 for (1, 1), �12
for (1, 0), �21 for (0, 1) and �22 for (0, 0). Denote the four corresponding sample proportions5
by p11 = a=n, p12 = b=n, p21 = c=n and p22 =d=n. Let �1 =�11 + �12 and �2 =�11 + �21, with
sample values p1 = (a+b)=n and p2 = (a+ c)=n. Table II summarizes the notation. The a+d7
identical observations in Table II are the a + d strata in the subject-speci�c table in which
yi1 =yi2.9
We treat the cell counts in Table II as having a multinomial distribution with index n and

parameters {�jk}. The marginal totals
∑

i yi1 = (a + b) and
∑

i yi2 = (a + c) are dependent11
binomials, with index n and parameters �1 and �2. The row and column margins of this table
are the elements in the 2× 2 table that is the collapsing of the subject-speci�c table over the13
n sample pairs. We refer to Table II as the marginal table.
A standard model for (yi1; yi2) in the subject-speci�c table has the form15

link[P(yi1 = 1)]= �i; link[P(yi2 = 1)]= �i + �c (1)

where ‘link’ refers to a link function such as the logit. Model form (1) is a conditional17
model, the e�ect �c being de�ned conditional on the pair (the c subscript in �c refers to
conditional). For instance, for the identity link, P(yi1 = 1)= �i and P(yi2 = 1)= �i + �c, and19
�c is an assumed common di�erence of probabilities for each pair. Ordinary model-�tting of
(1) treats (yi1; yi2) as independent, conditional on {�i}. With variability in {�i}, marginally21
(averaging over pairs) non-negative correlation occurs between the two binomial variates as
summarized by np1 and np2 in Table II.23
By contrast, let y1 denote the �rst observation of a randomly selected subject and let y2

denote the second observation of another randomly selected subject. The model25

link[P(y1 = 1)]= �; link[P(y2 = 1)]= �+ �m (2)

is a marginal model. Its e�ect is population-averaged, referring to averaging over the entire27
population of pairs rather than to individual ones. It refers to the margins of the 2× 2 popula-
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tion analog of Table II that cross-classi�es the n values of (yi1; yi2), and provides comparisons1
of �1 =P(y1 = 1) with �2 =P(y2 = 1).
Before considering particular cases, we mention an argument that implies that for this3

marginal model, only b and c provide information relevant to testing the null hypothesis of
equality of �1 and �2. This hypothesis is equivalent to �m =0, which is itself equivalent to the5
symmetry structure �21 =�12 in the 2× 2 population marginal table. Direct calculation shows
that the ratio of the maximized multinomial likelihood under �m =0 in model (2) to the7
maximized multinomial likelihood in general depends only on b and c. The likelihood-ratio
test statistic (i.e. minus two times the log of the likelihood ratio) equals 2b log[2b=(b+ c)] +9
2c log[2c=(b+ c)] and has an asymptotic �2 null distribution with df=1. For small samples,
conditional on b + c, its exact null distribution is induced by a binomial distribution for c11
with b+c trials and parameter 12 . In fact, this conditioning results naturally for the conditional
model (1) with logit link, as Section 4 reviews. For Table I, this binomial test results in a13
two-sided exact P-value of 0.152.
The test statistic based on the large-sample normal approximation for this binomial is15

z=
c − ( 12 )(b+ c)
[(b+ c)( 12 )(

1
2 )]

1=2
=

c − b
(b+ c)1=2

and squaring it yields the McNemar statistic. It is the score statistic (i.e. with standard error17
obtained under the null) for testing marginal homogeneity. For Table I, z=1:63, and the two-
sided P-value equals 0.102. (This is similar to the mid P-value for the binomial test, that is, the19
tail probability below 8 and above 24 added to half the probability of 8 and 24, which equals
0.108. The continuity correction with the McNemar test yields z=(15:5−8:5)=√8 + 16=1:4321
and a P-value of 0.153, similar to the binomial with ordinary P-value. Because of operating
conservatism, we will not use continuity corrections in this paper.) The Wald statistic divides23
the estimated e�ect by the non-null standard error. Its form depends on the link function for
model (2), but we will see that its dependence on a and c is negligible.25

3. DIFFERENCE OF PROPORTIONS

For the identity link, subject-speci�c and population-averaged e�ects are identical. For in-27
stance, for the conditional model (1), �c =P(Yi2 = 1) − P(Yi1 = 1) for all i, and averaging
this over pairs in the population equates �c in (1) to the di�erence of marginal probabilities29
�m =�2 − �1 in model (2). Another view of this uses the result that for model (1) with this
link applied to a 2× 2× n table, collapsibility holds when the stratum variable is marginally31
independent of the predictor variable [4]; here the sample cross classi�cation of these two
variables has a 1 in each cell.33
The sample di�erence of proportions equals

p2 − p1 =p21 − p12 = (c − b)=n35

This is the maximum likelihood (ML) estimate of �m for the marginal model with identity
link. For the conditional model it also results from a Mantel–Haenszel-type weighted average37
estimate with the subject-speci�c table [5]. Chen [6] showed that it is also ML for a ran-
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dom e�ects version of the conditional model in which {�i} are randomly sampled from any1
parametric family. With multinomial sampling in the marginal table,

Var(p2 − p1)= [(�12 + �21)− (�21 − �12)2]=n3

The sample estimate of Var(p2 − p1) is

V̂ar(p2 − p1)= (b+ c)− (c − b)
2=n

n25

Under the null hypothesis of marginal homogeneity (�1 =�2), the variance reduces to (�12 +
�21)=n and its estimate to (b + c)=n2, leading to the McNemar test. In the non-null case,7
the estimated size of the e�ect and its standard error diminishes as (a + d) increases, since
n=(b+ c)+ (a+d). Here and in later models, we consider the e�ect of (a+d) by letting it9
grow for �xed values of b and c. Then, n itself grows, and this provides a way of checking
the role of a and d with asymptotics that are local to the null hypothesis. To the order n−2, the11
estimated variance of (p2 −p1) is then (b+ c)=n2, the estimated null variance. Similarly, for
large n, the ratio of (p2−p1) to its estimated standard error is approximately (c−b)=√(b+ c),13
which is the standard normal form of the McNemar statistic. Thus, with the Wald test for the
di�erence of proportions, the contribution of (a+ d) is minor, especially for large n. For the15
moderate sample size in Table I, this Wald test has a ratio of estimate to standard error of
1.66, similar to the McNemar z of 1.63.17

4. ODDS RATIO

With the logit link, � in (1) and (2) refers to a log odds ratio. With the conditional model,19
ordinary ML estimation of �c fails because the number of {�i} parameters is proportional to
n. The ML estimator converges in probability to double the true value [7]. A popular alter-21
native approach eliminates {�i} by conditioning on their su�cient statistics [8]. The resulting
conditional ML estimator equals �̂c = log(c=b). This also equals the Mantel and Haenszel [9]23
estimator of a common log odds ratio for the subject-speci�c 2× 2× n table. By Neuhaus
et al. [10], it is also the ML estimator of �c for a random e�ects approach that assumes {�i}25
are a random sample from a parametric distribution, as long as the pairwise correlation be-
tween the responses (ad−bc)=√{(a+ b)(a+ c)(b+ d)(c+ d)}¿0. The model implies a true27
non-negative correlation; when the sample correlation is non-negative, the observed counts
in the marginal table are the marginal �t of the model, which is saturated for the marginal29
multinomial distribution. For the conditional ML analysis or for the random e�ects analysis
with positive correlation, the estimated asymptotic variance of �̂c is (b

−1 + c−1). Thus, with31
this model, a and d are irrelevant to estimation of the size of the e�ect or to inference about
whether the e�ect is non-null. In particular, if this model seems plausible, this is motivation33
for the use of McNemar’s test [8]. For Table I, �̂c = log(

16
8 )=0:693 has standard error 0.433,

and a ratio of 1.60.35
For marginal model (2) with logit link, the ML estimate of the log odds ratio is the sample

log odds ratio for the margins of the marginal table,37

�̂m = log[p2(1− p1)=p1(1− p2)]= log[(a+ c)(c+ d)=(b+ d)(a+ b)]

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:000–000
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By the delta method, the estimated asymptotic variance of
√
n(�̂m − �) is1

[p1(1− p1)]−1 + [p2(1− p2)]−1 − 2(p11p22 − p12p21)=[p1(1− p1)p2(1− p2)]

In this case, a and d in�uence both the estimated size of the e�ect and its precision. For3
instance, di�erentiation of �̂m with respect to a shows that |�̂m| decreases as a increases (or
as d increases), for �xed b �= c. The ratio of �̂m to its estimated standard error equals5

log(a+ c) + log(c+ d)− log(b+ d)− log(a+ b)√{n[(a+ d)(b+ c) + 4bc]=(a+ b)(c+ d)(a+ c)(b+ d)}
For �xed b �= c, suppose a=d. Then asymptotically as a grows, n≈ 2a and the ratio i is7
roughly on the order of

a[log(a+ c)− log(a+ b)]=√{b+ c} (3)9

As a increases, this converges to (c − b)=√{b+ c}. Thus, a and d also have little in�uence
on signi�cance in this case.11
When the conditional model holds with variability in {�i}, then |�m|6|�c| [11]. Thus,

�̂c and �̂m are not competitors, since the parameters di�er for the two models. However,13
when the {�i} in the conditional model are identical, then the marginal responses are in-
dependent and �m =�c. Then, the estimated asymptotic variance of

√
n�̂m for the marginal15

model simpli�es to [p1(1−p1)]−1 + [p2(1−p2)]−1. Straightforward calculation shows this is
6[p1(1 − p2)]−1 + [p2(1 − p1)]−1, the estimated asymptotic variance for √n�̂c under inde-17
pendence; see also Reference [6]. Thus, there is then some non-null e�ciency loss in using
the conditional estimator and ignoring the main diagonal counts. In fact, even when the two19
model e�ects are not equivalent, Liang and Zeger [12] proposed a compromise estimator of
�c in the conditional model that attempts to improve its e�ciency by using the main diago-21
nal counts. Their estimator smooths the usual conditional ML estimator toward the marginal
model estimator, with greater weight given the marginal estimator when there appears to be23
less variability in {�i}. It improves e�ciency while not being as biased in estimating �c as
the marginal estimator �̂m that ignores the matching. Note, however, that the e�ciency loss25
in using �̂c (and hence only b and c) when the marginal responses are independent disappears
as one approaches marginal homogeneity, in which case its asymptotic variance is the same27
as that of the marginal estimator.

5. RELATIVE RISK29

With the log link function, the e�ect in (1) and (2) is a log relative risk. When the conditional
model holds, then the marginal model has the same log relative risk, since collapsibility holds31
for this measure when the stratum variable is independent of the predictor variable [4]. For
the marginal model, the ML estimator is the sample log relative risk for the margins of the33
marginal table, �̂m = log[(a+ c)=(a+ b)]. The Mantel–Haenszel-type estimate of a common
log relative risk for the subject-speci�c table also simpli�es to this [13, 14]. Chen [6] showed35
that it is also ML for a random e�ects version of the conditional model in which {�i} are

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:000–000
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randomly sampled from any parametric family. As with the marginal odds ratio, |�̂m| decreases1
as a increases; however, it is una�ected by d.
By the delta method, the estimated asymptotic variance of �̂m is3

[p2(1− p1) + p1(1− p2)− 2(p11p22 − p12p21)]=np1p2 = (b+ c)=(a+ b)(a+ c)
Neither the estimator �̂m nor its estimated asymptotic variance depend on d. The ratio of �̂m5
to its estimated standard error equals

log(a+ c)− log(a+ b)√{(b+ c)=(a+ b)(a+ c)}7

For �xed b �= c, suppose a=d. Then asymptotically in a, the ratio is again on the order of
(3). Thus, for large a with �xed b and c, this is approximately (c−b)=√{b+ c}. As in other9
cases studied, the main diagonal counts have little in�uence on signi�cance.

6. BAYESIAN INFERENCE11

With logit link, the conditional model (1) and the marginal model (2) have been utilized from
a Bayesian perspective. For the marginal model, Altham [15] used a Dirichlet prior for {�jk}13
with parameters {�jk}. For the Dirichlet posterior, she noted that the posterior probability that
�2¿�1 equals the posterior probability that �21=(�12 +�21)¿ 1

2 , and �21=(�12 +�21) has a beta15
posterior distribution with parameters (c + �21; b + �12). Thus, although they a�ect the joint
posterior distribution of (�1; �2), neither (a; d) nor (�11; �22) a�ect the posterior signi�cance.17
She noted that when (�21; �12)= (1; 0), the posterior probability that �2¿�1 equals the one-
sided binomial P-value for McNemar’s test with the alternative that �2¡�1.19
By contrast, a and d do have some e�ect for the conditional model. Altham [15] used a

prior of the form f(�c)�(�1) · · ·�(�n). When f and � are symmetric about 0, she noted that21
the absolute di�erence between the posterior probability that �c¿0 and 1

2 is non-increasing
as a+ d increases. However, from the form she obtained for the posterior density f(�c) of23
�c, it follows that f(�c)=f(−�c)= exp[2�c(c − b)]; for a given �c, the posterior odds that
�2¿�1 does not depend on (a; d). The closeness to 1

2 of the posterior probability that �c¿025
depends strongly on the form of f. To illustrate, suppose f is discrete with probability 1

2 at
each of �0¿0 and −�0. Then, applying a result from Altham [15], the posterior probability27
that �c¿0 equals 1={1 + exp[2�0(b− c)]}, which approaches 1

2 as �0 approaches 0.
Altham [15] and Ghosh et al. [16] considered other prior formulations for the conditional29

model. For instance, Ghosh et al. [16] used a hierarchical Bayesian approach with arbitrary
link in which �c has a �at prior, {�i} are i.i.d. N(0; �2), and at the second stage �2 has an31
inverse gamma density. Then also, the absolute di�erence between the posterior probability
that �c¿0 and 1

2 decreases as a or d increases.33

7. EXTENSIONS TO MATCHED SETS

In summary, we have seen that with frequentist methods for standard models, pairs with35
identical outcomes may in�uence the estimated size of the e�ect but do not contain substantive

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:000–000
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Table IV. Summary of results of tests for Table I and for amended table with a=53
replaced by 530 and d=9 replaced by 90.

Original data Setting a=530; d=90

Parameter Model Estimate SE Ratio Estimate SE Ratio

Di�. proportions Marginal 0.0930 0.0561 1.659 0.0124 0.0076 1.636
Conditional 0.0930 0.0561 1.659 0.0124 0.0076 1.636

Log odds ratio Marginal 0.509 0.310 1.641 0.0932 0.0570 1.636
Conditional 0.693 0.433 1.601 0.693 0.433 1.601

Log relative risk Marginal 0.123 0.076 1.632 0.0148 0.0090 1.633
Conditional 0.123 0.076 1.632 0.0148 0.0090 1.633

Note: McNemar z statistic= 1:633.

information about its signi�cance. Table IV illustrates this. It shows results for the data in1
Table I for the various models studied in this note, and compares these results to what would
happen if the counts of 53 and 9 for the identical outcomes were replaced by 530 and 90.3
Although the estimates change (except for the log odds ratio with the conditional model), so
do the standard errors, and the Wald ratios approach the McNemar ratio of 1.633.5
Similar results apply with matched pairs of multi-category response variables. The

likelihood-ratio test of marginal homogeneity for an I × I marginal table does not depend7
on the I counts on the main diagonal. Likewise this is true of standard analyses for subject-
speci�c tables, such as the multi-category extensions of the Mantel–Haenszel test [17], which9
are score tests, or the likelihood-ratio test comparing symmetry and quasi-symmetry models
[18].11
These results also extend to matched sets of T¿2 observations. We discuss this using the

extensions of the marginal model (2) and the conditional model (1). With logit link, the13
marginal model for the 2T marginal table is

logit[P(yt =1)]= �+ �t; t=1; 2; : : : ; T (4)15

and the conditional model is

logit[P(yit =1)]= �i + �t; t=1; 2; : : : ; T (5)17

with a constraint in each case such as �T =0.
For the likelihood-ratio test of marginal homogeneity (H0: �1 =�2 = · · · =�T ) for the19

marginal model, the value of the test statistic is completely independent of the matched sets in
which all responses are successes or all responses are failures. This is also true for analogous21
tests for the conditional model with methods that condition on statistics that force those cell
counts to be constant in the relevant sampling distribution. An example is the Cochran Q �223
statistic [3], which is an extension of McNemar’s test from matched pairs to matched sets of
observations. One can obtain that test also by conducting an extended Mantel–Haenszel test25
on the extension of the subject-speci�c Table III that has T rows for each stratum but again
only one observation in each row [19]. The analysis conditions on the total success and failure27
totals in each stratum, and the conditional distribution is degenerate for strata in which every

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:000–000
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Table V. Summary counts for longitudinal study of coronary risk factors in schoolchildren
(from Reference [20]).

Response pattern for (1977, 1979, 1981)

000 001 010 011 100 101 110 111
248 15 15 12 19 6 18 30

Note: 1= obese, 0= not obese.

Table VI. Summary of results of tests in logit model for Table V and for amended table
with 300 in (0,0,0) and (1,1,1) cells.

Original data 300 in (0,0,0), (1,1,1)

Parameter Estimate SE Ratio Estimate SE Ratio

Marginal model
�2 − �1 0.034 0.122 0.28 0.012 0.042 0.28
�3 − �1 −0:181 0.145 −1:29 −0:058 0.047 −1:25
�3 − �2 −0:215 0.132 −1:63 −0:070 0.043 −1:64
Wald statistic 2.78 2.84
LR statistic 2.83 2.83

Conditional model: Conditional ML
�2 − �1 0.070 0.264 0.25
�3 − �1 −0:361 0.270 −1:34
�3 − �2 −0:430 0.270 −1:59
Wald statistic 2.89
LR statistic 2.95
CMH statistic 2.92

Conditional model: Random e�ects ML
�2 − �1 0.069 0.263 0.26 0.071 0.264 0.27
�3 − �1 −0:365 0.272 −1:34 −0:348 0.266 −1:31
�3 − �2 −0:434 0.271 −1:60 −0:419 0.266 −1:57
Wald statistic 2.90 2.83
LR statistic 2.97 2.88

response is a success or a failure. Likewise, conditional ML �tting of the conditional model1
(5) gives a likelihood that ignores matched sets of observations with identical outcomes. The
conditional ML approach conditions on su�cient statistics for {�i} in (5), which are the sub-3
ject success totals, in estimating {�t}. As in the matched-pairs case, the Wald statistic does
depend slightly on the identical sets, but as their number increases (keeping other counts5
constant) the statistic converges to a limiting value that is independent of those counts.
We illustrate by applying the models to Table V, from a longitudinal study of coro-7

nary risk factors in schoolchildren [20]. A sample of children were classi�ed by relative
weight (1=obese; 0=not obese) in three separate years. Table VI shows the parameter es-9
timates, standard errors, Wald statistic, and likelihood-ratio statistic for testing the time e�ect
(H0: �1 =�2 =�3) for the marginal model (4) with the original data and with an amended11
data set that replaces the counts in cells (0,0,0) and (1,1,1) by 300 each. The likelihood-ratio

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:000–000
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statistic is constant at 2.83. The Wald statistic converges to 2.83 as the count in cells (0,0,0)1
and (1,1,1) increases unboundedly. (Its values for counts in cells (0,0,0) and (1,1,1) of 10d

with d=(2; 3; 4; 5; 6) are (2.848, 2.833, 2.829, 2.829, 2.829).) Table VI also shows the result3
of the conditional ML analysis for the conditional model (5), which does not depend at all
on those two cells.5
Matched sets with identical outcomes can have some e�ect for an extension of the con-

ditional model that provides further structure for which ML analysis uses those outcomes.7
Consider the random e�ects approach that replaces {�i} by random intercepts {ui} having an
N(�; �2) distribution. Table VI shows that the likelihood-ratio statistic for this model depends9
slightly on the matched sets with identical outcomes, with a slight diminution of signi�cance
as more identical triplets of observations occur. (The ML estimate of � is 3.1 for the original11
data and 9.3 when the (0,0,0) and (1,1,1) cell counts are replaced by 300, and this table
also illustrates how the diminution of marginal model estimates relative to conditional model13
estimates increases as � increases.) As in Bayesian approaches with the conditional model,
when the subject terms have a probability distribution the evidence about an e�ect diminishes15
as the subject heterogeneity increases. In addition, assuming this random e�ects structure for
the model, the conditional ML method that ignores it (and the sets of identical outcomes)17
can then lose e�ciency.
Therefore, for the random e�ects version of the conditional model, why is the matched-19

set case di�erent from matched pairs in terms of the potential impact on signi�cance tests
of the identical sets? An illuminating paper in this regard is by Neuhaus and Lesperance21
[21]. They showed that in logit mixed-e�ects models with covariates, the potential loss of
e�ciency in ignoring the identical sets depends on the within-subject correlation. The e�-23
ciency of conditional likelihood estimators is a decreasing function of within-subject covariate
correlation, and the e�ciency loss can be substantial for covariates that have a strong posi-25
tive within-subject correlation. However, the matched-pairs case referred to in this note has
within-subject covariate correlation =−1, as depending on the order of viewing the observa-27
tions, the dummy predictor changes from 0 to 1 or from 1 to 0. When the covariate takes
its maximum negative correlation, Neuhaus and Lesperance showed that no e�ciency loss29
occurs. For �xed covariate correlation, they also showed that the e�ciency loss of conditional
estimators decreases as the number of repeated observations increases, since the probability31
of identical observations (and, thus, discarding the subject) decreases. Interestingly, there are
strong connections between conditional likelihood estimators and estimators obtained with a33
mixed-e�ects model using a non-parametric treatment of the random e�ects [22, 23]. Neuhaus
[24] gave related e�ciency comparisons of a mixed model approach with a GEE approach for35
a corresponding marginal model. He showed that the GEE approach using the exchangeable
covariance structure su�ers no e�ciency loss.37
We �nish by mentioning a caveat, although perhaps an obvious one. Even in the matched-

pairs case, one should not conclude that pairs with identical outcomes are irrelevant in all39
analyses for judging signi�cance of e�ects. In more general models that add between-subject
covariates, estimates of between-subject e�ects could be badly biased if we deleted observa-41
tions with identical outcomes. For instance, suppose that when we stratify Table I by taking
into account the race of the subject, all 53 (success, success) sequences are for black subjects43
and all nine (failure, failure) sequences are for white subjects. Then, if we deleted these 62
observations in modelling the response in terms of race and treatment, the e�ect of race would45
be drastically underestimated.
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