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Quasi-Symmetric Latent Class Models, with Application to 
Rater Agreement 

Alan Agresti and Joseph B. Lang* 

Department of Statistics, University of Florida, Gainesville, Florida 3261 1, U.S.A. 

SUMMARY 

Suppose we observe responses on several categorical variables having the same scale. We consider 
latent class models for the joint classification that satisfy quasi-symmetry. The models apply when 
subject-specific response distributions are such that (i) for a given subject, responses on different 
variables are independent, and (ii) odds ratios comparing marginal distributions of the variables are 
identical for each subject. These assumptions are often reasonable in modeling multirater agreement, 
when a sample of subjects is rated independently by different observers. In this application, the model 
parameters describe two components of agreement-strength of association between classifications 
by pairs of observers and degree of heterogeneity among the observers' marginal distributions. We 
illustrate the models by analyzing a data set in which seven pathologists classified 118 subjects in 
terms of presence or absence of carcinoma, yielding seven categorical classifications with the same 
binary scale. A good-fitting model has a latent classification that differentiates between subjects on 
whom there is agreement and subjects on whom there is disagreement. 

1. Introduction 
Latent class models express the joint distribution among a set of categorical variables as a mixture of 
distributions, each component of which satisfies mutual independence among the variables. Each 
distribution in the mixture applies to a cluster of subjects representing a separate class of a categorical 
latent variable, those subjects being homogeneous in some sense. Since Goodman's (1974) develop- 
ment of maximum likelihood (ML) procedures for fitting latent class models, they have been used 
for a wide variety of applications. For instance, Clogg (1981) used them to analyze intergenerational 
mobility, interpreting the latent classes as different social classes. Aitkin, Anderson, and Hinde (1981) 
used them to analyze educational research data by clustering teachers into distinct teaching styles. 
Latent class models have also been used to assess agreement and disagreement among subjects' 
responses to several survey items (Clogg, 1979) or among ratings by several judges (Aickin, 1990; 
Dillon and Mulani, 1984; Espeland and Handelman, 1989; Uebersax and Grove, 1990). See Goodman 
(1974), Haberman (1979, Chap. 10), and McCutcheon (1987) for introductions to latent class models. 

This article discusses a latent class model in which each observed variable has the same categorical 
scale, and the relationship among those variables satisfies quasi-symmetry. Such models are appro- 
priate when subject-specific response distributions satisfy two basic assumptions. The first is a local 
independence assumption, whereby for a given subject, responses on different variables are indepen- 
dent. The second is a lack of interaction assumption, whereby odds ratios comparing marginal 
distributions of observed variables are identical for each subject. Latent classes in the models consist 
of sets of subjects who are homogeneous in terms of having the same response distributions. The 
proposed quasi-symmetric latent class models are parsimonious, having identical associations between 
each observed variable and the latent variable. For ordinal variables, even simpler models are relevant, 
such as one having a common linear-by-linear association between each observed variable and the 
latent variable. 

As mentioned above, several authors have used latent class models to investigate interrater 
agreement. Other authors, including Agresti (1988), Becker (1990), and Darroch and McCloud (1986), 
have used quasi-symmetric models for this purpose. In this article we combine the approaches and 
use quasi-symmetric latent class models to analyze agreement. To illustrate the models, we analyze 
Table 1, based on data presented by Landis and Koch (1977). Seven pathologists classified each of 
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Table 1 
Diagnoses of carcinoma (1 = no, 2 = yes) 

Pathologist 

A B C D E F G Count 

1 1 1 1 1 1 1 34 
1 1 1 1 2 1 1 2 
1 2 1 1 1 1 1 6 
1 2 1 1 1 1 2 1 
1 2 1 1 2 1 1 4 
1 2 1 1 2 1 2 5 
2 1 1 1 1 1 1 2 
2 1 2 1 2 1 2 1 
2 2 1 1 1 1 1 2 
2 2 1 1 1 1 2 1 
2 2 1 1 2 1 1 2 
2 2 1 1 2 1 2 7 
2 2 1 1 2 2 2 1 
2 2 1 2 1 1 2 1 
2 2 1 2 2 1 2 2 
2 2 1 2 2 2 2 3 
2 2 2 1 2 1 2 13 
2 2 2 1 2 2 2 5 
2 2 2 2 2 1 2 10 
2 2 2 2 2 2 2 16 

118 

118 slides in terms of carcinoma in situ of the uterine cervix. Category 2 represents a diagnosis of 
carcinoma. The data have been analyzed using kappa-type measures of agreement by those authors 
and by Schouten (1982), and using loglinear models by Becker and Agresti (1992). The data consist 
of 118 observations in a cross-classification of the ratings having 27 = 128 cells. A quasi-symmetric 
model with three latent classes provides simple interpretations for pairwise agreement structure among 
the seven raters. We use model parameters to describe strength of association between ratings as well 
as degree of heterogeneity among the raters' marginal distributions on the binary scale. The three 
latent classes correspond to subjects for whom raters generally agree on the presence of carcinoma, 
subjects for whom raters generally agree on the absence of carcinoma, and subjects for whom there 
is strong disagreement. 

Section 2 describes the basic assumptions and introduces the concepts of quasi-symmetry and local 
independence. Section 3 defines quasi-symmetric latent class models, and Section 4 presents a simpler 
model for ordinal scales. Section 5 discusses model fitting and inference, and Section 6 applies models 
to Table 1. The final section comments on the scope of the models and relates them to Rasch models 
and Rasch mixture models proposed by Lindsay, Clogg, and Grego (1991). 

2. Quasi-Symmetry and Local Independence 
Suppose we observe responses on R categorical variables that have the same set of I categories. We 
observe the variables for n subjects, randomly sampled from a population of S subjects. We permit 
subject-specific variability in response distributions. For subject s and variable r, let ?sr-i denote the 
probability of response in category i. To simplify notation in the following discussion, we illustrate 
models for R = 3, with variables denoted by A, B, and C. The models extend in an obvious manner 
to arbitrary integer R > 2. 

For a given subject s, we assume that classifications on different variables are statistically indepen- 
dent. That is, the probability that subject s has responses h on variable A, i on variable B, and j on 
variable C, equals Osl1hks2iOs3j- Letting ir,i, denote the probability of these three outcomes for a 
randomly selected subject, we have 

=,ij S' , IJslhhs2its3i (2.1) 

Associations among variables in the $ir,,J} distribution are due to heterogeneity among subjects in 
their response distributions. The data to be analyzed consist of sample cell counts {n,,j} specifying 
frequencies for the I3 possible combinations of outcomes. 

We also assume that t'sri} satisfy the condition of no three-factor interaction; that is, the association 
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between item observed and response is the same for each subject, so ks,-I has the form 

ksr-i = Casrfsi'Yri. (2.2) 

As we discuss in Section 7, this means that 1ksril satisfy a generalized Rasch model. Equivalently, 
(2.2) means that the signals emitted by the subjects rated and the rater differences combine without 
interaction in affecting the response. Darroch and McCloud (1986) gave arguments supporting 
assumption (2.2) for modeling rater agreement on subjective categorical scales. They also noted by 
substituting (2.2) into (2.1) that [ir,,J consequently satisfy quasi-symmetry (Caussinus, 1965); that is, 

,/,ij has the form 

,= a,,bicid,,ii, (2.3) 

where d,li is identical for every permutation of the subscripts. Darroch and McCloud (1986) argued 
that models for agreement should satisfy quasi-symmetry. 

Next, suppose there is a categorical variable X, having L levels, such that subjects in each level of 
X are homogeneous; namely, for each 1, r, and i (I = 1, . . ., L; r = 1, . . ., R; i = 1, . . ., I), suppose 
there is a probability Plri such that for all subjects s in category I of X, fs,-i = Pl/i. When Jos,si} satisfy no 
three-factor interaction, then so do $Pl,ir. Variable X is unobserved, hence a latent variable. The 
assumption of independence of the observed variables within each level of X is referred to as "local 
independence. 

For a randomly selected subject, let 7r/,ijl denote the probability of outcomes (h, i, j) for variables 
(A, B, C), and categorization in class I of X. Then w,,ij in (2. 1) satisfies 7r,ij = 7rhii+, where the subscript 
+ denotes summation over that index, and pill, = 7r/,++1/7r...1, P/2i = ir+i+?/7r..., P13j= =7++j/T+++. 
Since 

7rhif/ = 7r...IP/lPI2iPP3i, 

i7r/,ijil satisfy mutual independence of A, B, and C, given X; that is, they satisfy the loglinear model 
for which the sufficient marginal configurations are represented by the notation (AX, BX, CX). The 
loglinear model representation (Haberman, 1979) is equivalent to the standard probabilistic latent 
class model for three observed variables and a single latent variable. 

For a random sample of n subjects, let m,,ij, = n7r/,j,4 denote expected frequencies for the unobserved 
A-B-C-X cross-classification. Formula (2.3) suggests that it may be fruitful to consider models for 
which {m,,j+} satisfy quasi-symmetry. 

3. A Simplified Latent Class Model 
The loglinear version (AX, BX, CX) of the ordinary latent class model for I m,,i41} corresponds to the 
nonlinear model for the expected frequencies I m,,i = m,, I? of observed cells having form 

log Mn,j = , + X + X+ + iog[ exp(Xi + X + X + XBV)1. (3.1j) 

This model satisfies quasi-symmetry if the term in brackets in (3.1) is the same for every permutation 
of (h, i, j). But this condition is equivalent to 

i.= = X.,, for all i and 1. (3.2) 

So, no three-factor interaction for $Pri} implies highly parsimonious models having identical associa- 
tion between each observed variable and the latent variable. We refer to model (3.1) with condition 
(3.2) as the qulasi-symmetric latent class (QLC) model. 

We first consider some implications of the QLC model when L = I = 2. Without loss of generality, 
we scale the parameters describing the association of each observed variable with X so that X12 = 

21 = X22 = 0. Let X denote the common value of I X, and let I(.) denote the indicator function. 
When the QLC model holds, the logit model 

logit[Pr(X = I IA = h, B = i, C = j)] = a + X[I(h = 1) + I(i = 1) + I(j = 1)] (3.3) 

describes effects of the observed variables on the latent variable. That is, the odds of response 1 equal 
exp(cv) when A = B = C = 2, and they are multiplied by exp(tN) when t observed variables equal 1. 
Standard conditions are satisfied for collapsing over levels of observed variables, implying that the 
marginal relationship between each observed variable and X has odds ratio exp(N). 

For the QLC model, one can make simple comparisons of marginal distributions of the observed 
variables within each latent class, using odds ratios of {P,,rt}. For instance, for variables A and B when 
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I = 2, we would use the odds ratios 

Pr(A = 1 IX = l)/Pr(A = 2 IX = 1) _ P/11I/P/12 _ 
.X(A-6B,L 34 

Pr(B =1 IX = -)/Pr(B = 2 X = 1) P/21/P/22 

where &A = I' - X.. = N? - ?4. Since 1PIril satisfy no three-factor interaction, the odds ratios 
are identical for every latent class 1. 

In every level of X, each subject has an observation for each observed variable. The independence 
of the subject-by-item table implies that (collapsing over subjects) the marginal probabilities Iri,,), 
17r+l+), and tIr++,) have the same ordering as I ,, 6B, &i}. When 6,= = = &C- in the QLC model, in 
each latent class the observed variables have identical response distributions. The A-B-C contingency 
table then satisfies first-order marginal homogeneity, and the QLC model satisfies complete symmetry. 
In practice, we rarely expect this special case of the model to fit well. 

4. An Ordinal Quasi-Symmetric Latent Class Model 
When the observed categorical scale is ordinal, one can further improve model parsimony and obtain 
simpler interpretations by fitting latent class models that utilize the ordinality. One such model of 
this type also treats X as ordinal, and assumes a linear-by-linear association between each classification 
and X. Specifically, the model uses scores I uil for the observed scale and scores Ix4 for the latent 
classes, and has form 

log m, = , + A,, + N7 + xN + Nx + + /XlYx + / 3 BXiU + 3CX- x,Y. (4.1) 

This model is a member of one type of latent class association model for ordinal variables considered 
by Agresti and J0rgensen in unpublished work, in which the scores may be fixed or parameters. When 
$x4 have equal spacing (e.g., x1+ -x, = 1 for all 1), then (4.1) implies the adjacent-categories linear 
logit relationship 

[Pr(X = + 1)1 +O_'j' BIl 
l[p r(X-=) 

a , + dcX -u +j fBu + fCA'U1, I = 1, . ., L - 1 (4.2) 

for the effects of the observed variables on the latent classification. 
It follows from Goodman (1985) that model (4.1) should fit well when there is an underlying 

multivariate normal distribution, with zero partial correlation between pairs of observed variables, 
given the latent variable. This model with AX " = 3BX = fC' is a very parsimonious QLC model. When 
the scores are fixed, a single parameter (3) determines all odds ratios between observed variables and 
X. We refer to this special case as a linear-by-linear quasi-symmetric latent class (L x L QLC) model. 

For the L x L QLC model, odc s ratios comparing marginal distributions take especially simple 
form when the single-factor parameters are linearly related. Namely, suppose 

Ni=Ni+ai&, r= 1,...,Randi= 1,...,I, (4.3) 

where Jail are monotone increasing scores and IXiN and lb,.) satisfy constraints such as Ni = 61 = 0. 
Then, N;4 - X7 = ai(&A - 6B), and when Iai+I - ai = 1 

Pr(A =i + I I X-/)/Pr(A =l X= 1) = exp(b.,- B) (4.4) 
Pr(B = i + 1 I X = l)/Pr(B = i IX = 1)=ex( - )(4) 

for all i and 1. The ratings distributions are then stochastically ordered, with Ib & > 6B} equivalent to 
IPr(A>iIX)>Pr(B> iIX)fori= 1, . . .I-1. 

5. Inference for QLC Models 
To conduct inference about QLC models, we assume I n,,ijl in the observed A-B-C contingency table 
have independent Poisson(m,,ij) distributions; or, equivalently for the parameters of interest, we 
condition on n and assume a multinomial(n, 7rh,,I) distribution. One can fit the models using standard 
methods for latent class models (Goodman, 1974; Haberman, 1979), such as the EM algorithm. In 
that algorithm, the E (expectation) step used proportional fitting to approximate counts in the full 
A-B-C-X table using the observed A-B-C counts and the working conditional distribution of X, 
given the observed responses. In the M (maximization) step we treated those approximate counts as 
data in the standard iterative reweighted least squares algorithm for fitting loglinear models. We fitted 
the models of Sections 3 and 4 using the GLIM package, supplying appropriate macros to combine 
the E step with the ordinary GLIM fitting of Poisson loglinear models. The routine has slow 
convergence but is simple and seems insensitive to starting values, at least when the log-likelihood 
has a unique local maximum (such as usually occurs for small L). One can also fit the models using 
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some existing programs for latent class models, such as LAT (Haberman, 1979) and NEWTON 
(Haberman, 1988). One can use fitted models to estimate probabilities 8Ir++..4 of classification in 
various latent classes as well as conditional probabilities lPl,ir of various responses, given the latent 
class. 

One can obtain estimated standard errors for model parameter estimators by inverting the estimated 
information matrix for the nonlinear model for the observed table. Or, one can apply a general 
formula that Louis (1982) gave for estimating the observed information when using the EM algorithm. 
This formula provides an enlightening view of how the information for the model for the observed 
JR table compares to that of the loglinear model for the jR x L table that also treats the latent variable 
as observed. Let Y denote the counts in the JR observed table, and let Z denote counts in the JR x L 
cross-classification of Y with the latent variable. Louis showed that the observed information Iy for 
the model for Y is related to the expected full-data observed information Iz of Z by 

IJ = Iz - Iz I, 

where Iz, y denotes the expected information for the conditional distribution of Z given Y. 
In the latent class model context, let X denote the model matrix for the Poisson loglinear model 

for the full JR x L table; that is, the model has form log[E(Z)] = XB8. Let D be a diagonal matrix with 
the elements of E(Z) on the main diagonal. Let V be a block-diagonal matrix, each block of which 
has multinomial covariance structure for cell counts across the latent dimension at a fixed level of 
the observed variables. For instance, when R = 3, each block is an L x L multinomial covariance 
matrix for In,,1 . . . j, n,ijL implied by the model, conditional on their sum n,,i+. Then, 

I= X'DX, IzI, = X'VX, and II = X'(D - V)X. 

Thus, the covariance matrix for ,B is approximately [X'(D - V)X]-l. When L = 1, all cell counts in 
the full table are observed, so V = 0 and we obtain the usual information matrix for a Poisson 
loglinear model (e.g., Agresti, 1990, p. 179). When L > 2, there is a reduction in information from 
not observing the latent variable, and parameter estimators have larger variances in the resulting 
nonlinear model. 

To test the fit of a model, one can use chi-squared goodness-of-fit statistics to compare Jn,J to 
model fitted values. The residual degrees of freedom (do equal JR - L(RI - R + 1) for the ordinary 
latent class model, JR - [(R - 1)(I - 1) + LI] for the QLC model, and JR - (RI + L - R + 1) for 
the L x L QLC model. The QLC and L x L QLC models are special cases of the quasi-symmetry 
model for the jR cross-classification of the observed variables, which has df = jR - (I - 1)(R - 1) - 
(I + R - 1)!/[(I - 1)!R!]. When L = (I + R - 1)!/(R! I!), the QLC model is equivalent to quasi- 
symmetry for the JR table. When L exceeds this value, the QLC model is unidentifiable. The QLC 
models, being highly parsimonious, are applicable to more situations than ordinary latent class 
models. When I = 2, for instance, unlike the ordinary model, the QLC model is unsaturated when 
JR = 3; L = 21. 

6. Application to Modeling Interrater Agreement 
The modeling of multirater agreement is an application in which the assumption of local independence 
is reasonable. Suppose R raters rate the same sample of subjects on a categorical scale, such as 
(positive, negative) for diagnosis of whether subjects have a certain disease. When ratings are done 
"blindly," ratings of a given subject by different raters are independent. If subjects having "true" 
rating in a given category are relatively homogeneous, then ratings by different raters may be nearly 
independent within a given true rating class. For instance, when I = 2, the agreement structure 
specified by the 2Rjoint distribution for the R ratings may be a mixture of two distributions, statistical 
independence among raters for subjects whose true rating is positive, and statistical independence 
among raters for subjects whose true rating is negative. A QLC model is then appropriate if there is 
no three-factor interaction among rater, response, and subject. The "true" rating scale or the scale 
generating homogeneous subsets of subjects need not have the same categories as the observed scale, 
so L need not equal I. 

Interrater agreement has two components-distinguishability of categories and lack of bias. For 
subjectively defined categorical scales, distinguishability refers to how well an expert rater can 
distinguish between pairs of categories. For two raters, distinguishability increases as the association 
in their joint distribution becomes more strongly positive, in the sense that odds ratios of the type 
[Pr(A = i, B = i)Pr(A = j, B = j)/Pr(A = i, B = j)Pr(A = j, B = i)] become larger (Darroch and 
McCloud, 1986). Bias decreases as their marginal distributions become more nearly equivalent. Strong 
agreement, in terms of relatively high probability of identical ratings, requires both similar marginal 
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distributions and strong positive association. In QLC models, variation in marginal distributions is 
addressed by variation in the {f,.r parameters [see (3.4)], and strength of association is induced by the 
common association between each observed variable and the latent variable. For instance, when I = 
L = 2 in the QLC model, the marginal odds ratio between each pair of observed variables is monotone 
increasing in X for X > 0 (for fixed single-factor parameters), equaling 1 when X = 0. The strength of 
agreement improves in the two-way tables relating pairs of raters as 16J move toward uniformity and 
the association between each rater and X increases. 

We now use Table 1 to illustrate quasi-symmetric latent class models. The original classifications 
were made on a five-point scale, but for simplicity Landis and Koch (1977) and Schouten (1982) 
analyzed the data using the binary representation in Table 1, whereby category 2 combines the third, 
fourth, and fifth categories from the five-point scale. Even with this simplification, the data are sparse. 
Table 2 reports likelihood-ratio statistics for testing the fit to these data of several latent class models. 
Because of the sparseness, we use these statistics primarily for comparing models with a fixed number 
of latent classes. 

The latent class model with L = 1 latent class is simply the model of mutual independence of the 
seven ratings. It fits poorly, as one would expect. For L = 2, the QLC model and the ordinary latent 
class (LC) model have substantial lack of fit. For instance, they give fitted counts of about 23, 
compared to the observed 34, for the cell corresponding to a rating of 1 by each rater. Models having 
L = 3 fit much better than those having L = 2. In addition, the parsimonious quasi-symmetric models 
(i.e., the QLC and L x L QLC models) fitted essentially as well as the general quasi-symmetry model 
for the 27 table, so it is unnecessary to consider L = 4 latent classes. In fact, the QLC model with 
L = 4 is identical to the general quasi-symmetry model. Further discussion refers only to models 
having L = 3. 

When I = 2 and L = 3, the ordinary latent class model is equivalent to the generalization of model 
(4.1) in which {IX = 3x,4 are parameters, and different { X4 apply in each association. For the fit of 
that model, the estimated {$x,} are monotone increasing in I for all raters except B. The QLC model 
with I = 2 and L = 3 is equivalent to the homogeneous version of model (4.1) in which {$x,} are 
parameters and are identical for each association. Table 2 shows that this model is much more 
parsimonious than the ordinary LC model, yet does not give a significantly poorer fit. Expressing 
each association in the form f3uix1 and setting it, - u, = 1 and x, = 0 for identifiability, we obtain 
ML estimates of {$x,, / = 1, 2, 31 for the QLC model of 0, 4.65, and 8.88. The estimated log odds 
ratio between each rater and X is 4.65 for the first two levels of X, and 4.23 for the last two levels of 
X. These two estimates suggest using the simpler model in which they are identical, which corresponds 
to setting {x4 = {0, 1, 2 . Table 2 shows that this model, the L x L QLC model, also fits well. It yields 
simple interpretations, which we discuss next. 

In the L x L QLC model, / = 4.38. Thus, the estimated odds ratio between each observed variable 
and levels Xa and x/, of X is exp[4.38I x, - xi I]. For instance, the odds that a rater selects category 1 
are estimated to be exp[4.38(2)] = 6,374 times higher for subjects in the first latent category than for 
subjects in the third category. From the inverse of the estimated information matrix, the estimated 
standard error for d is .374. An approximate 95% confidence interval for the odds ratio just described 
is exp{2[4.38 ? 1.96(.374)]I, or (1.5, 27.8) x 103. The estimated standard error of f using Louis's 
(1982) estimator of the information matrix is .422, leading to an approximate 95% confidence interval 
of (1.2, 33.7) X 103. The intervals are crude, using standard error and normal sampling distribution 
approximations that may be poor for such sparse data for a nonlinear model. However, the intervals 
make clear that there is very strong association between each rating and the latent rating, with the 

Table 2 
Likelihood-ratio statistics fbr testing Jit of latent class models to Table 1 

No. latent Likelihood-ratio Degrees of 
classes Model statistic freedom 

1 Independence 476.8 120 
Quasi-symmetry 23.7 114 

2 Ordinary LC 62.4 112 
2 QLC 67.6 118 
3 Ordinary LC 15.3 104 
3 QLC 27.5 116 
3 LxLQLC 27.7 117 
3 L x L QLC + Marginal homogeneity 259.4 123 
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point estimate of the strength being quite imprecise. The corresponding fitted odds ratio estimates 
between pairs of raters are also strong, varying between 7.2 and 394.2. 

Table 2 shows that the simpler L x L QLC model assuming marginal homogeneity (i.e., 
6A = * = G) fits poorly. For the L x L QLC model, Table 3 shows the estimated {I3r and estimated 
standard errors of the estimates of {e,3 - 6j, calculated using the inverse of the estimated information 
matrix. The estimated {&Jr (which we scaled to satisfy 6/1 = 0) show that rater B tends to make the 
greatest number of ratings of carcinoma, and D and F the least. For instance, JB - 6F= 7.07 means 
that in each latent class, the estimated odds of a diagnosis of carcinoma are exp(7.07) = 1,180 times 
higher for B than for F. Based on the estimated standard errors of the differences, a 90% simultaneous 
Bonferroni comparison of the 21 pairs shows that the marginal differences for the (A, E), (A, G), 
(B, E), (C, D), (D, F), and (E, G) pairs of raters are not statistically significant. Figure 1 shows results 
of such a comparison. 

Table 4 reports for each rater the estimated probability of carcinoma diagnosis, conditional on the 
latent class. Note that odds estimates using these values yield the {exp(b, - a)} estimates just described; 
for instance, exp(4B - 34) = (.148/.852)/(.021/.979), and similarly for the other latent classes. The 
fitted probabilities suggest an interpretation for the latent classes. The first latent class consists of 
cases that all raters (except occasionally B) agree show no carcinoma. The third latent class consists 
of cases in which raters A, B, E, and G agree there is carcinoma, and C and D usually agree. The 
second class consists of the cases of strong disagreement, whereby C, D, and F rarely diagnose 
carcinoma, but A, B, E, and G usually do. The estimated proportions in the three latent classes are 
.37, .20, and .43, so about 20% of the cases are in the problematic class. 

In summary, the L x L QLC model with L = 3 has only three more parameters than the mutual 
independence model, yet it fits well and provides simple interpretations. It requires one parameter to 
describe associations between each rater and the latent variable, and six parameters to describe 
variation in the marginal distributions of the raters. These seven parameters lend insight in describing 
the structure of agreement in a table having 128 cells. There is very strong but uniform positive 
association between each rating and the latent rating, which induces strong association between pairs 
of ratings; however, there is substantial marginal heterogeneity among the ratings, which causes 

Table 3 
Estimated {3br and {br - 6, (with estimated standard errors in parenthleses), for linear-by-linear 

quasi-symmetric latent class mnodel with L = 3 classes 

Pathologist 
A B C D E F G 

.00 2.11 -3.16 -4.42 .80 -4.96 .00 
6e3-&: A -2.11 3.16 4.42 -.80 4.96 .00 

(.61) (.65) (.66) (.58) (.66) (.55) 
B 5.27 6.53 1.32 7.07 2.11 

(.84) (.86) (.60) (.86) (.61) 
C 1.26 -3.96 1.80 -3.16 

(.47) (.72) (.48) (.65) 
D -5.22 .54 -4.42 

(.73) (.40) (.66) 
E 5.76 .80 

(.74) (.58) 
F -4.96 

(.66) 

Pathologist F D C A G E B 

Estimate -4.96 -4.42 -3.16 .00 .00 .80 2.11 

Comparison 

Figure 1. Result of 90% Bonferroni simultaneous comparison of {e3r}. 
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Table 4 
Estimnated probabilities of diagnosing carcinoma, for linear-by-linear qluasi-symmetric latent 

class model with L = 3 classes 

Pathologist 

A B C D E F G 
Pr(carc. I X = 1) .021 .148 .001 .000 .044 .000 .021 
Pr(carc. I X = 2) .627 .933 .067 .020 .789 .012 .627 
Pr(carc. I X = 3) .993 .999 .852 .619 .997 .485 .993 

heterogeneity in pairwise levels of agreement. Whatever lack of agreement exists seems due more to 
bias than to category indistinguishability. If the raters could calibrate themselves to achieve marginal 
homogeneity, then this model would simplify to complete symmetry in the joint ratings table, and 
hence uniformity in the pairwise agreement structure. 

7. Comments 
For the case I = 2, the models discussed in this article are related to special cases of the Rasch model 
(Rasch, 1961). That model, for R items and S subjects, has the form 

log(Osri/0.st2) = aXs + a, 

That is, it assumes no three-factor interaction for {ks,ril, with a binary response. It follows from Tjur 
(1982) that one can obtain conditional ML estimates of {16 in the Rasch model by fitting the quasi- 
symmetry model to the 2R table that cross-classifies responses on the R items [e.g., model (2.3) for 
R = 3]. For Table 1, the conditional ML estimates (scaled so 6&l = 0) are {.00, 2.07, -3.39, -4.71, 
.80, -5.38, .001. These are similar to the estimates reported in Table 3 of the analogous parameters 
in the simpler L x L QLC model, which is not surprising since that model also fit well. When I = 2, 
the QLC models correspond to a class of latent class models introduced by Lindsay et al. (1991), 
which they referred to as Rasch mixture models. In that case, the QLC model also corresponds to a 
logistic latent class model presented by Uebersax (1993) for rater agreement, having equal measure- 
ment error rates across raters. Andrich (1978), Clogg (1988), and Rost (1988) considered other latent 
class approaches that have similarities with models discussed in this article. 

When quasi-symmetric latent class models hold, they provide the advantage of simple interpretation. 
However, they are so simple that they may have limited scope. In some applications, lack of fit may 
occur because local independence holds at the subject level but does not hold for a latent variable 
having few latent classes. For instance, subject homogeneity may be determined by a continuous 
variable, in which case homogeneity within levels of X may occur to a decent approximation only for 
relatively large L. Or, lack of fit may occur because of violations of the assumption of no three-factor 
interaction for {jsri . From results in Lindsay et al. (1991), it follows that one can check this assumption 
by comparing the fit of the QLC model to that of the ordinary LC model having the same number 
of latent classes. Though the scope of QLC models may be limited, we believe they are worthy of 
notice because of the economical description available when they do fit well. 
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RESUME 

Supposons que nous observons des reponses a plusieurs variables categorielles ayant la meme echelle. 
Nous considerons les mod&les a classe latente dont la classification conjointe respecte la condition de 
quasi-symetrie. Ces modeles s'appliquent lorsque les distributions des reponses specifiques au sujet 
sont telles que (i) les reponses aux differentes variables sont independantes pour un sujet donne et 
(ii) que les odds ratios comparant les distributions marginales des variables sont identiques pour 
chaque sujet. Ces hypotheses sont souvent raisonnables dans la modelisation de l'accord entre plusieurs 
evaluateurs lorsque l'echantillon de sujets est evalue independamment par differents observateurs. 
Dans cette application, les parametres du modele decrivent deux composantes de l'accord entre 
observateurs, l'intensite de l'association entre les classifications par paire d'observateurs et le degre 
d'eeoeet parmi les distributions marginales des observateurs. Nous illustrons ces modeles en 
analysant un fichier de donnees pour lequel plusieurs pathologistes ont classifie 118 patients en terme 
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de presence-absence de carcinome, conduisant a plusieurs classifications categorielles avec la meme 
echelle binaire. Un mod&le correctement ajuste aux donnees poss&de une classification latente qui 
difThrentie les sujets pour lesquels il y a concordance de ceux pour lesquels il y a discordance de 
jugement. 
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