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Abstract

Exact small-sample methods for discrete data use probability distributions that do not depend on unknown parameters. However,
they are conservative inferentially: the actual error probabilities for tests and confidence intervals are bounded above by the nominal
level. This article surveys ways of reducing or even eliminating the conservatism. Fuzzy inference is a recent innovation that enables
one to achieve the error probability exactly. We present a simple way of conducting fuzzy inference for discrete one-parameter
exponential family distributions. In practice, most scientists would find this approach unsuitable yet might be disappointed by the
conservatism of ordinary exact methods. Thus, we recommend using exact small-sample distributions but with inferences based on
the mid-P value. This approach can be motivated by fuzzy inference, it is less conservative than standard exact methods, yet usually
it does well in terms of achieving desired error probabilities. We illustrate for inferences about the binomial parameter.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, considerable attention has been paid to ways of conducting exact small-sample inference for discrete
data. Most of this has been in the context of the analysis of contingency tables. These methods use distributions
determined exactly rather than as large-sample approximations. To achieve exactness, most common is a conditional
inference approach that focuses on the parameter of interest while eliminating nuisance parameters by conditioning on
their sufficient statistics. For small tables, there is also some literature on an unconditional approach.

Software is now readily available for small-sample methods. Best known and most complete are StatXact for con-
tingency table methods and LogXact for logistic regression, both marketed by Cytel Inc. (2005). Although many
statisticians are aware only of Fisher’s exact conditional test for 2 x 2 tables, there is now a wide variety of methods
available in such software. These include unconditional methods for comparing binomial proportions with tests and
confidence intervals, inferences for r x c tables, inferences for stratified tables including tests of conditional inde-
pendence and homogeneity of association, inferences for dependent samples and for clustered data, inferences about
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measures of association and measures of agreement, and inferences about parameters in logistic regression models and
some of their multinomial extensions.

The term “exact” in “exact small-sample inference” refers to the use of exactly determined distributions, rather
than normal or chi-squared approximations, to obtain P-values and confidence intervals. However, the inferences are
not exact in the sense that error probabilities exactly equal the nominal values. Rather, the nominal values are upper
bounds for the true error probabilities. This is well known for significance tests. For example, suppose a test of a
simple hypothesis Hyg has nominal size 0.05, in the sense that Hy is rejected when the P-value is no greater than 0.05.
If the possible P-values for the exact discrete, small-sample distribution are 0.02, 0.06, 0.12, .. ., then the actual size
is 0.02.

The same phenomenon is true for confidence intervals. Consider intervals constructed by inverting a test (e.g., a 95%
confidence interval consists of the set of parameter values not rejected at the 0.05 significance level in the family of
tests). Inverting a test that has actual size no greater than 0.05 for each possible parameter value results in a confidence
interval having coverage probability at least equal to 0.95. The actual coverage probability varies according to the
parameter value, and so in practice it is unknown. Thus, conservatism of exact tests propagates to conservatism of exact
confidence intervals. In fact, the situation is worse in the sense that one does not know the actual error probability,
but merely its upper bound. See Agresti (2001) for a review and a discussion of issues that make exact inference
awkward for discrete data. Our present article surveys the specific aspect of methods for reducing or even eliminating
conservatism in exact inference.

Section 2 reviews small-sample inference for discrete exponential-family distributions and illustrates with the bino-
mial. Section 3 surveys ways to reduce the conservatism. In theory, the conservatism can even be eliminated if one uses
supplementary randomization to achieve the desired error probability exactly. Section 3 also reviews this approach,
which was fashionable for awhile around 1950. Section 4 discusses a related approach for discrete data recently pro-
posed by Geyer and Meeden (2005), fuzzy inference, which yields exactly the desired error rate. We then present a
simpler way of conducting fuzzy inference for discrete exponential family distributions.

Certain special cases of the randomized and fuzzy inference approaches relate to inference based on the mid-P value.
Section 5 reviews this approach and evaluates its performance for inference about a binomial parameter. We believe
that inference based on the mid-P value provides a sensible compromise that mitigates the effects of conservatism of
exact methods yet is more useful in practice than randomized or fuzzy inference.

2. Small-sample inference for discrete distributions

Traditionally, exact inference about a parameter 0 requires the actual error probability to be no greater than the
nominal level, which we denote by «. For a significance test of a hypothesis Hy, the actual size is no greater than o.
That is, the P-value satisfies

Py(P-value < «|Hp) <«

for all o and for all 0 in Hy. For a confidence interval, the actual coverage probability must be at least 1 — « for all
possible values of 6.

Let T be a discrete test statistic. Denote its probability mass function by f(¢|0) and its cumulative distribution
function by F(¢]6). For each value 6y of 0 let A(0p) denote the acceptance region of a test of Hy: 6 = 6. This is the
set of values 7 of T for which the P-value exceeds o. Then, for each ¢, let C(¢t) = {0y : t € A(0p)}. The set of {C(¢)} for
various t are the confidence regions with the desired property. In other words, having acceptance regions such that

Py T € A(0p)1>1 — «

for all Oy guarantees that the confidence level for {C(¢)} is at least 1 — o.

For a typical 0y, one cannot form A(0p) to achieve probability of Type I error exactly equal to o, because of
discreteness. Hence, such significance tests and confidence intervals are conservative. The actual coverage probability
of C(T) varies for different values of 0 but is bounded below by 1 — o (Neyman, 1935). In technical terms, the bound
results from the distribution of F (7 |0) being stochastically larger than uniform when 7 is discrete (Casella and Berger,
2002, p. 77, 434).
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2.1. One-parameter exponential families

In this article we will assume that the observations x1, x2, . . ., x, are independent from a single-parameter exponential
family distribution with probability mass function,

h(x)c(0) explw(0)t (x)].

The minimal sufficient (and complete) statistic is 7 = ) ;7 (x;). Below, for specificity, we discuss one-sided inference
in terms of a significance test and two-sided inference in terms of confidence intervals.

Standard results found in statistical theory texts such as Casella and Berger (2002) include the following: if w(6) is
nondecreasing, the family of distributions has monotone likelihood ratio. This is true in the standard cases, and we will
assume it below. Then, for testing Hy: 6 < 6 against Hy: 6 > 0, for any ¢, the test that rejects Hg if and only if T >1¢ is
a uniformly most powerful (UMP) test of size o = Py, (T >t). With observed test statistic value Zops, the P-value for the
testis Py, (T > tobs). If F(¢]0) is a decreasing function of 0 for each ¢ (which is true when there is monotone likelihood
ratio), and if

P(T<t|0u(®) =2/2 and  P(T =1|00L(1)) = /2, (D

then [0 (T), Ou(T)] is a 100(1 — )% confidence interval for 6. That is, it has probability at least 1 — o of containing
0. This method of forming a confidence interval is often called the tail method.

2.2. llustration for the binomial distribution

For n independent, identically distributed Bernoulli observations with parameter 0, T is the “number of successes”
and has binomial distribution with index n and parameter 0. To test Hy : 0 <0 against H, : 6 > 0y, the UMP test rejects
for sufficiently large values of 7.

For the case 0y = 0.50, which is most common in practice, Fig. 1 shows the actual size of a nominal size o = 0.05
test, plotted as a function of n between 5 and 200. The conservatism is quite marked for small n, which is precisely
when one would prefer not to rely on large-sample methods, but it persists even for moderately large n.

In a standard application of the above confidence interval theory, Clopper and Pearson (1934) proposed the following
100(1 — 2)% confidence interval for the binomial parameter: the endpoints (0t 6y) satisfy

n Tobs
Z (Z’) Hl]i(l _ HL)n—k = a/z and Z (Z) 9][{_](1 —_ HU)n—k = O(/2’
k=0
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Fig. 1. Actual sizes of exact (—) and mid-P (- - -) binomial tests of Hy : 6 <0.50 against Hy : 6 > 0.50, plotted as a function of n between 5 and 200.



6450 A. Agresti, A. Gottard / Computational Statistics & Data Analysis 51 (2007) 6447 —-6458

1.00 -

0.98

0.96 4 whiflat

YU R
e[| |".. ¢,
f

coverage

w [V VIR
','"‘u'l ',";:," [y
Wy ] s
i gt

bt "-} "

0.94 +

0.92

T T T
0 50 100 150 200

n

Fig. 2. Actual coverage probabilities of Clopper—Pearson (—) and mid-P (- - -) confidence intervals for binomial parameter 6, plotted for n between
5 and 200 when 6 = 0.50.

except that 0p =0 when 5, = 0 and Oy = 1 when t,ps =n. This confidence interval is based on inverting two one-sided
UMP binomial tests. For instance, the 95% confidence interval when fohs =0 in n =35 trials is (0.000, 0.522). This means
that 0y must be above 0.522 in order for the binomial left-tail probability in testing Hy : 0 = 0y against H, : 0 < 0y to
fall below 0.025.

Fig. 2 plots the true probability of coverage of the 95% Clopper—Pearson confidence interval, as a function of n, when
the 6 = 0.50. Again, the degree of conservatism is quite severe, even when n is moderately large. Various evaluations
have shown this. See, for instance, Newcombe (1998), Agresti and Coull (1998), and Brown et al. (2001).

3. Reducing or eliminating conservatism

This section surveys some ways of reducing or even eliminating the conservatism of exact, small-sample inference.
We will illustrate these for two-sided interval estimation of the binomial parameter.

3.1. Confidence intervals not based on the tail method

Inverting a family of tests corresponds to forming the confidence region from the set of 6 for which the test’s P-value
exceeds o. The tail method (1) requires the stronger condition that the probability be no greater than o;/2 that T falls
below A(fp) and no greater than o;/2 that T falls above A (). The interval for this method is the set of 6y for which
each one-sided P-value exceeds o/2. One disadvantage of the tail method is that for sufficiently small and sufficiently
large 6, the lower bound on the coverage probability is actually 1 — a/2 rather than 1 — . For sufficiently small 6, for
instance, the interval can never exclude 0 by falling below it.

Alternatives to the tail method exist for which intervals tend to be shorter and coverage probabilities tend to be closer
to the nominal level. One approach inverts a single two-sided test instead of two equal-tail one-sided tests. For instance,
a possible two-sided P-value is min{ Py, (T = tobs), Py, (T <tobs)} plus an attainable probability in the other tail that is
as close as possible to, but not greater than, that one-tailed probability. The confidence intervals based on inverting such
a test necessarily are contained in confidence intervals obtained with the tail method. Blaker (2000) used this approach
for the binomial parameter and gave S-plus functions for implementing it. See Agresti (2003) for an example of the
improvement this provides over the Clopper—Pearson method.

Another two-sided approach forms the acceptance region A(0p) by entering the test statistic values 7 in A(fp) in
order of their null probabilities, starting with the highest, stopping when the total probability is at least 1 — «; that
is, A(0p) contains the smallest possible number of most likely outcomes (under 6 = 0g). The corresponding P-value
is the sum of null probabilities that are no greater than the probability of the observed result. When inverted to form
confidence intervals, this approach satisfies the optimality criterion of minimizing total length. These intervals and the
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ones based on the P-value described in the previous paragraph satisfy a nestedness property, in which an interval with
larger nominal confidence level necessarily contains one with a smaller nominal level. Sterne (1954) proposed this
approach for interval estimation of a binomial proportion.

Yet another way to invert a two-sided test order points for the acceptance region and forms P-values according to
a statistic that describes the distance of the observed data from Hg. One could use a statistic 7 based on a standard
criterion such as the likelihood-ratio statistic, the Wald statistic, or the score statistic.

These various two-sided approaches do not have the tail method disadvantage of a lower bound of 1 — «/2 for the
coverage probability over part of the parameter space. However, some methodologists might find discomforting the
lack of information about how each tail contributes to the analysis.

3.2. Confidence intervals based on less discrete statistics or P-values

In constructing a test or a confidence interval based on a test, the test statistic should not be any more discrete than
necessary. For instance, a sample proportion of 0 =0.40 gives less evidence in testing Hp : 6 = 0.50 than in testing
Hp : 0 = 0.30, because the null standard error is smaller in the second case. It is better to base tests and subsequent
confidence intervals on a standardization, such as by dividing the difference between the sample proportion and its null
value by the null standard error, or the relative likelihood values.

Likewise, it is sometimes possible to reduce conservativeness by using a less discrete form of P-value. For instance,
instead of including the probabilities of all samples having 7" = f4}s in the P-value, Kim and Agresti (1995) included
only probabilities of those samples that are no more likely to occur than the observed one. For an example of estimating
a common odds ratio in 18 2 x 2 tables for which the tail method gave a 95% confidence interval of (0.05, 1.16), the
interval based on this less discrete P-value was (0.09, 0.99).

3.3. Confidence intervals using an unconditional approach for nuisance parameters

For comparing parameters from two discrete distributions, the conditional approach eliminates nuisance parameters
by conditioning on their sufficient statistics. This approach, however, increases the degree of discreteness. Moreover,
it is limited to the natural parameter for exponential family distributions.

An alternative approach to eliminating the nuisance parameter is unconditional. For a nuisance parameter 1, let
p(0o; ) denote the P-value for testing Hy : 0 = 0 for a given value of . The unconditional approach takes P-value =
supy, p(0o; ). This is a legitimate P-value (Casella and Berger, 2002, p. 397). If p(6o; ) is relatively stable in ,
this method has the potential to improve on conditional methods. See, for instance, Suissa and Shuster (1985), who
showed improvement in power over Fisher’s exact test for testing equality of two independent binomials. Agresti and
Min (2001) used the unconditional approach to form a confidence interval for the difference of proportions, based on
inverting the score test. Agresti and Min (2002) used the unconditional approach for interval estimation of the odds
ratio. Lloyd (2006) showed how to use an unconditional approach with an estimate of .

3.4. Randomized tests and confidence intervals

In the statistical theory of hypothesis testing, for discrete problems it is possible to achieve the exact size by
randomizing appropriately on the boundary of the critical region (e.g., Lehmann, 1986, pp. 71-76). One constructs a
critical function ¢ (¢) for the probability of rejecting the null hypothesis: ¢(¢) = 1.0 for 7 in the interior of the rejection
region, ¢(¢) = 0.0 outside that region, and ¢(¢) = a value between 0 and 1 on the boundary of the rejection region
determined so that the size equals the desired value. For testing Hy : 0 = 0y against H, : 0 > 0y for an exponential
family with test statistic 7" and observed value #pg, this corresponds to using P-value

P@()(T > tobs) + OZ[ S P@o(T = tObS)’ (2)

where % is a uniform(0,1) random variable (Cox and Hinkley, 1974, p. 101).
To construct a confidence interval that achieves exactly (a priori) probability (1 — «) of covering the unknown
parameter value, one can invert two such randomized tests. The upper and lower endpoints of the confidence interval
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are the solutions to the equations

Py (T <tobs) + U x Py, (T = tops) = /2 (3)
and

Py, (T > tobs) + (1 — W) x Py (T = tohs) = /2. “)

Stevens (1950) suggested this for the binomial parameter, but the same argument works for other exponential family
distributions. This confidence interval inverts tests for which (as in the case of continuous random variables) the one-
sided P-values sum to 1 and each have a uniform null distribution, unlike the ordinary one-sided P-values used in the
tail-method confidence interval.

To achieve the nominal size exactly, a randomized confidence interval must have some counterintuitive behavior at
the boundary T values. When T takes its minimum possible value, the lower bound exceeds the smallest parameter
value when % > 1 — o/2; when T takes its maximum possible value, the upper bound is less than the largest parameter
value when % < a/2.

These days statisticians regard randomized inference as a tool for the mathematical convenience of achieving exactly
the desired size or confidence level with discrete data, but in practice no one seriously considers using it. However, this
method was originally thought to have considerable promise. For example, Pearson (1950) suggested that statisticians
may come to accept randomization after performing an experiment just as they had gradually come to accept random-
ization for the experiment itself. Stevens (1950) stated “We suppose that most people will find repugnant the idea of
adding yet another random element to a result which is already subject to the errors of random sampling. But what one
is really doing is to eliminate one uncertainty by introducing a new one. The uncertainty which is eliminated is that
of the true probability that the parameter lies within the calculated interval. It is because this uncertainty is eliminated
that we no longer have to keep “on the safe side”, and can therefore reduce the width of the interval”.

4. Fuzzy inference using discrete data

To address the conservativism issue with randomized procedures but without the arbitrariness of picking a uniform
random variable, Geyer and Meeden (2005) suggested using fuzzy inference. For testing Hg : 6 = 0y with a desired
size o, they defined a fuzzy decision to be a critical function ¢(z, o, 0p) having that size, viewed as a function of the
value t of the test statistic 7. For given ¢, they regarded ¢ as a function of o and called it a fuzzy P-value. For fixed t and
o, they called the function [1 — ¢ (¢, o, 0)] the fuzzy confidence interval. With T treated as a random variable (for given
0), it has unconditional coverage probability (1 — o). We focus on the fuzzy confidence interval here.

Geyer and Meeden defined the core of the fuzzy confidence interval to be the set of  for which [1 —¢ (¢, «, )=1]. They
defined the support to be the set of 0 for which [1 — ¢(¢, o, 0) > 0]. Given ¢, rather than performing the randomization,
they recommended merely plotting the fuzzy confidence interval. This is a way of portraying the inference about where
0 falls while guaranteeing exactly the appropriate coverage probability (unconditionally).

Geyer and Meeden proposed fuzzy inferences that are UMP in the one-sided case and UMPU in the two-sided case,
based on standard exponential family theory. Their two-sided inference is complex to conduct. Details were not given
in their article, but a companion website (http://www.stat.umn.edu/geyer/fuzz/) shows that computations are complex
even for simple cases such as a single binomial parameter.

In the discussion of Geyer and Meeden (2005), Agresti and Gottard suggested a simpler way to construct two-sided
fuzzy inferences that directly uses the randomized tests and randomized confidence interval described in Section 3.4.
We illustrate here for a fuzzy confidence interval. Consider the set of possible randomized intervals with endpoints
determined by (3) and (4). As U increases from O to 1, the lower and upper endpoints are monotonically increasing.
Substituting % = 0 in Egs. (3) and (4) gives the bounds for a randomized interval having as lower bound the lower
bound from the conservative confidence interval (1). Substituting % = 1 gives the bounds for a randomized interval
having as upper bound the upper bound from the conservative confidence interval (1). Thus, the support of this fuzzy
confidence interval is the ordinary conservative confidence interval (e.g., the Clopper—Pearson interval for the binomial
parameter). The core of this fuzzy confidence interval is the set of 0 values that fall in every one of the possible
randomized confidence intervals. This core goes from the lower bound of the randomized confidence interval with
% =1 to the upper bound of the randomized confidence interval with % = 0.
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Fig. 3. Fuzzy confidence intervals (Geyer and Meeden (- - -), Agresti and Gottard (—)) for binomial data with sample size n = 10, confidence level
1 — o= 0.95, and observed test statistict =0, 1, 2, 3, 4, 5.

The figure for this fuzzy confidence interval is easily constructed, especially when 7 is not at its minimum or maximum
value. Consider an arbitrary value % = u for the uniform random variable. The value that is the lower bound of the
randomized confidence interval with % = u is contained only in all the randomized confidence intervals with % less
than or equal to u. So, for the given z, the probability 1 — ¢ (¢, o, ) of containing that value is u. So, at the value 6
that is the lower bound of the randomized confidence interval with % = u, the height of the curve to display the fuzzy
confidence interval is u. Likewise, the value that is the upper bound of the randomized confidence interval with % = u
is contained only in all the randomized confidence intervals with U greater than or equal to u. So, for the given ¢, the
probability 1 — ¢(t, «, 0) of containing that value is 1 — u. So, at the value 0 that is the upper bound of the randomized
confidence interval with % = u, the height of the curve to display the fuzzy confidence interval is 1 — u.

Fig. 3 shows the Geyer—Meeden and Agresti—Gottard fuzzy 95% confidence intervals for the binomial parameter 0
when n =10. Fort =0, 1, ..., 5, this plots 1 — ¢(¢, 0.05, 0) as a function of 0; by symmetry, analogous plots apply
forr =6, ..., 10. Averaged over ¢ for a given 0, the fuzzy confidence interval has exact coverage probability 0.95.
Our experience shows that the Agresti-Gottard fuzzy confidence interval typically has better performance than the
Geyer—-Meeden UMPU fuzzy interval, in terms of a more restricted core and support, except when ¢ is at or very near
the boundary.
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5. The mid-P-value-based quasi-exact approach

In this article we have first discussed exact methods for which the nominal error probability « is an upper bound for
the actual value, and then methods that achieve the nominal error probability exactly at the sacrifice of randomization.
In practice, it is often reasonable to relax this requirement slightly, allowing the error probability to go slightly above
o for some 0 values.

5.1. The mid-P-value for significance tests

One way to reduce or eliminate conservatism while continuing to use the exact probabilities from the small-sample
distribution uses the mid-P-value (Lancaster, 1949, 1961). This replaces Py, (T =tobs) in the P-value by (1/2) Py (T =
tobs). For instance, the one-sided right-tail mid-P-value is

Py, (T > tops) + (1/2) Py, (T = tops).

One way the mid-P-value results is by forming the usual type of P-value but with Parzen’s (1997) mid-distribution
Sfunction, Fpiq(t) = P(T <t) — 0.5P(T =1t). The mid-P-value =1 — Fig(fobs)-

The mid-P-value depends only on the data, unlike the randomized P-value (2). The test using randomized P-value
achieves the nominal size, and the mid-P-value replaces % in the randomized P-value by its expected value. Under Ho,
with discrete distributions the ordinary P-value is stochastically larger than a uniform random variable. By contrast, the
mid-P-value has null expected value equal to % (see, e.g., Berry and Armitage, 1995). Also, for the ordinary P-value
the sum of the right-tail and left-tail P-values is 1 + Py (T = fops); for the mid-P-value, this sum is 1. Lancaster’s
(1949) original motivation for proposing the mid-P-value was to create a statistic that, like the uniform P-value for a
continuous random variable, was useful for combining several independent samples.

Unlike the P-values discussed previously in this article, the mid-P-value does not necessarily satisfy
Py, (P — value <o) <a. It is possible to exceed the nominal size. However, evaluations of the mid-P-value in a signifi-
cance testing format have been encouraging, as summarized next.

Haber (1986) showed that a modification of Fisher’s exact test using the mid-P-value has actual size near the nominal
size, and the power of the modified test is usually close to that of the randomized UMPU exact test. Hirji et al. (1991) and
Seneta and Phipps (2001) had similar size results for this case in comparisons with various classical tests. Hirji (1991)
showed that the mid-P test worked well for conditional logistic regression (which can be highly discrete). Hwang and
Yang (2001) presented an optimality theory for mid-P-values in 2 x 2 contingency tables, showing how this P-value is
the expected value of an optimal P-value resulting from a decision-theoretic approach. Strawderman and Wells (1998)
and Butler (2007) showed that ordinary P-values obtained with higher-order asymptotic methods without continuity
corrections for discreteness yield performance similar to that of the mid-P-value. For other literature, see the list given
by Hirji (2005, pp. 50-51). See also the discussion on pp. 218-219 of his book on arguments for basing inference on
the mid-P-value.

An awkward aspect of exact conditional inference in logistic regression is that the relevant conditional distribution
can be highly discrete. It can even be degenerate when an explanatory variable is continuous. Potter (2005) proposed
a permutation test that is also a small-sample method but does not have this disadvantage. The predictor of interest is
replaced by residuals from a linear regression of it on the other explanatory variables. Logistic regressions are done
for permutations of these residuals, and a P-value is computed by comparing the resulting likelihood-ratio statistics
to the original observed value. Potter noted that in small data sets, this permutation P-value is usually similar to the
mid-P-value for the exact conditional approach.

5.2. Mid-P confidence intervals

One can form confidence intervals that are less conservative than the traditional discrete one (1) by inverting tests
using the mid-P-value. For example, the upper endpoint of the 95% mid-P confidence interval is the solution to

Py, (T < tobs) + 0.5 x Py, (T = tops) = 0.025.

Berry and Armitage (1995) reviewed this approach. Unlike a randomized confidence interval, the mid-P confidence
interval necessarily has lower endpoint equal to the smallest value in the parameter space when 7 takes its minimum
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value and upper endpoint equal to the largest value in the parameter space when 7 takes its maximum value. Mid-P-
based inference has the advantage over other approximate methods, such as large-sample methods, that it uses the exact
distribution.

Confidence intervals based on inverting tests using the mid-P-value cannot guarantee that coverage probabilities
have at least the nominal level. However, evaluations for a variety of cases have shown that this method still tends to
be somewhat conservative, although necessarily less so than using the ordinary P-value. For details, see Vollset (1993),
Agresti and Coull (1998), and Newcombe (1998) for the binomial parameter, Agresti (1999) for the odds ratio, Mehta
and Walsh (1992) and Hirji et al. (1994) for a common odds ratio in several 2 x 2 tables, Vollset et al. (1991) for
parameters in conditional logistic regression, and Cohen and Yang (1994) for the Poisson parameter.

Brown et al. (2001) stated that the mid-P interval for the binomial parameter approximates closely the most popular
interval for the Bayesian approach, which uses the Jeffreys prior distribution (beta with parameters 0.5 and 0.5). This
relates to work of Routledge (1994). He showed that for the Bayesian approach with Jeffreys’ prior, for a test of
Hp: 0>0.5 against Hy: 0 < 0.5, the P-value given by the posterior probability P(6>0.5|¢) approximately equals the
one-sided mid-P-value for the frequentist binomial test.

5.3. Performance of mid-P methods for binomial parameter

We illustrate the behavior of mid-P inference for the binomial case. For testing 0 = 0.50 against 0 > 0.50, Fig. 1
plots the actual size of a nominal size o« = 0.05 test as a function of n for the ordinary exact binomial test and for the
adaptation using the mid-P-value. For 6 =0.50, Fig. 2 plots the actual coverage probability of nominal 95% confidence
intervals as a function of n, for the Clopper—Pearson exact approach and for the mid-P adaptation. In either case, the
actual error probability for the mid-P-based inference tends to fluctuate around the nominal value.

Likewise, for fixed n and varying 6, the actual error probabilities for mid-P-based inferences tend to fluctuate around
the nominal value, with the variability of the fluctuations diminishing as n increases. As a consequence, if we average
error probabilities uniformly across the parameter space, the average tends to be quite close to the nominal level. Fig. 4
shows a smoothed representation of the quartiles of the coverage probabilities (considered over the possible 6 between
0 and 1) as a function of n, for the ordinary and the mid-P-based confidence intervals. The median coverage probability
for the mid-P-based confidence interval is much closer to the nominal level. This suggests that the mid-P approach is
an excellent one to adopt if one hopes to achieve close to the nominal level in using a method repeatedly for various
studies in which 0 itself varies. For this, one must tolerate the actual coverage probability being, for some 0, slightly
below the nominal level.
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Fig. 4. Quartiles of coverage probabilities (using a uniform distribution for €) for Clopper—Pearson (—) and mid-P (- - -) confidence intervals for
binomial parameter 6, for n between 5 and 200.
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5.4. Software and mid-P inference

For some basic inferences for discrete data, such as tests for a binomial parameter and Fisher’s exact test for 2 x 2
tables, StatXact (Cytel, 2005) reports the probability of the observed result as well as the exact P-value. Thus, it is
possible to use its output to obtain the mid-P-value for tests. For inference about a parameter of a logistic regression
model, LogXact can determine the mid-P-value using a score test or likelihood-ratio test with the exact conditional
distribution. However, currently neither software supplies confidence intervals based on the mid-P-value.

We have prepared an R function for finding the mid-P confidence interval for a binomial parameter. It is available at
www.stat.ufl.edu/~aa/cda/software.html.

6. The u-P-value based quasi-exact approach

As noted above, inference based on the mid-P-value tends, on the average, to maintain a bit of conservatism. This
motivates defining a related P-value that achieves, in some average sense, exactly the nominal error probability. For
0<u <1, we define one-sided u-P-values to have the form

POO(T > lfobs) + U X P()O(T = lobs), P()O(T <lobs) + u X P()O(T = lobs)-

Traditional conservative inference, such as the Clopper—Pearson binomial confidence interval, uses # = 1. Inference
based on the mid-P-value uses u = 0.5.

For a distribution G over the possible values for the parameter 0, let u(G; o, n) be the value of u for which the
confidence interval for 0 based on the u-P-value has expected coverage probability, with respect to G, equal to the
nominal value (1 — o). We evaluated u(G; 0.05, n) for the binomial parameter for various n, when G is uniform,
beta(0.5, 0.5), and beta(2,2). We found that u(G; 0.05, n) tends to be around 0.25 to 0.35 for small n, gradually
increasing (though not strictly monotonically) to about 0.50 as n increases. For example, in the uniform case, for
n = (25,50, 75, 100, 125, 150, 200), u(G; 0.05, n) = (0.32, 0.38, 0.43, 0.43, 0.49, 0.47, 0.49). In the beta(0.5, 0.5)
case for G, u(G; 0.05,n) = (0.25,0.25,0.32,0.35,0.37, 0.38, 0.47). In the beta(2, 2) case for G, u(G; 0.05,n) =
(0.39,0.45,0.47,0.52, 0.52, 0.55, 0.55).

One approach to eliminate conservativism is to construct a confidence interval based on the u(G; o, n)-P-value for
a reference distribution G. In the binomial case, the uniform may be a default choice, but one could let G reflect the
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Fig. 5. Coverage probabilities for mid-P (- - -) and u-P (with u = 0.35) (—) confidence intervals for binomial parameter 6, for n = 30.
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way one expects 0 to vary in similar studies. One does not need to adopt the Bayesian framework to take this latter
approach, although a Bayesian statistician would argue that it is logically inconsistent to do this without using the
Bayesian approach for the entire procedure.

If one were to adopt this approach, the question arises as to whether the potential improvement in reducing average
conservatism over the mid-P-based interval is practically important. To consider this, we obtained actual coverage
probabilities of nominal 95% confidence intervals for the binomial parameter based on the u(G; 0.05, n)-P-value with
G uniform, and plotted these as a function of 0 for various n. The coverage probabilities mimiced closely those for the
mid-P interval, but for small to moderate n some quite low coverage probabilities resulted. Fig. 5 illustrates for n = 30.
Because of this, we prefer the ordinary mid-P confidence interval.

7. Summary

The conservatism of exact inference for parameters of discrete distributions can be substantively important for larger
sample sizes than most methodologists realize. In practice, there are cases in which it is desirable to have the nominal
error rate as a lower bound. For most applications, however, we believe it is more sensible to use a method for which the
actual error rate is closer to the nominal error rate than happens with traditional exact inference. Inference based on the
mid-P-value is a simple way to achieve this goal. Significance tests based on the mid-P-value are simple with existing
software. It is surprising that statistical software does not incorporate the mid-P approach for confidence intervals, as
computationally this is simple. We hope that the major statistical software packages, in future releases, incorporate
mid-P confidence intervals for parameters of discrete distributions.
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