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Abstract

This article surveys ways of taking order restrictions into account in the analysis of con-
tingency tables. The methods are best suited for tables in which at least one classification is
ordinal. Primary topics include (1) inequality constraints for parameters for a set of independent
binomial random variables, (2) inequality constraints for odds ratios, (3) inequality constraints
for parameters in loglinear or logit models, and (4) structured terms such as linear trends in
loglinear and logit models. We discuss methods for contingency tables with two rows or two
columns that result from comparing several binomial parameters or two multinomial distributions,
two-way contingency tables with arbitrary numbers of rows and columns, multi-way contingency
tables in which two-way analyses are relevant within levels of a stratification factor, and square
contingency tables having the same categories in each dimension. We discuss the advantages and
disadvantages of various order-restricted approaches and highlight possible problems for future
research. (©) 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In recent years statisticians have increasingly recognized that many benefits can result
from using methods that take into account orderings among categories of classifications
in contingency tables. The benefits include the potential for considerable improvements
in power over methods that ignore the ordinal information and greater parsimony in
model-building from a reduction in the number of parameters needed to describe asso-
ciation structure. In particular, ordinal models can represent predictions about monotone
or linear trends in effects and associations.
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One way to utilize ordered categories is to assume inequality constraints on pa-
rameters for those categories that describe association structure. This article surveys
order-restricted descriptive and inferential analyses of contingency tables that are based
on such constraints. These methods are based on restrictions such as the monotone in-
crease of a set of binomial parameters, uniformly positive (or uniformly negative) log
odds ratios between two categorical variables, association structure using monotonically
ordered parameters in loglinear and logit models, order restrictions under stratification
for a control variable, and order restrictions for comparing margins of multivariate cat-
egorical responses. In all cases, the methods relate to inequality constraints for a set
of probabilities, odds ratios, or model parameters.

Section 2 introduces analyses for » x 2 contingency tables that compare binomial
parameters at » ordered levels of a factor. Section 3 presents order-restricted methods
for » x ¢ contingency tables, such as in comparing several multinomial distributions
with ordered categories. These methods are specified in terms of inequality constraints
on various odds ratios. The binomial methods of Section 2 have connections with those
for the 2 X ¢ multinomial setting. Section 4 discusses methods for » x ¢ contingency
tables that are specified in terms of inequality constraints on parameters in various
parametric models. Section 5 presents extensions to multi-way contingency tables and to
comparing marginal distributions of multivariate categorical responses. Throughout, the
article highlights problems for future research. Section 6 focuses on this and discusses
reasons that inequality-constrained methods are not more prominent in the toolbox used
by most data analysts.

Although our focus is on inequality-constrained methods for the contingency table
format, we mention in passing that a large literature also exists on such methods for
probabilities (7, 7y,...,7.) in a single c-category multinomial distribution or for a set
of Poisson means. For instance, Dykstra and Lee (1991) showed that for {r;} that are
isotonic (order-preserving) with respect to the index set, maximum likelihood (ML)
and various other estimators are related and can be expressed in terms of least squares
projections, El Barmi and Dykstra (1994, 1996) characterized the ML estimates under
the restriction that {7} lie within a convex set, and Bhattacharya (1997) considered
other cases. Chacko (1966) provided a test of Hy: m;=---=n. against H;: 7; < --- < 7,
using a chi-squared-type statistic that approximates the likelihood-ratio (LR) statistic,
and Bhattacharya (1995) considered this ordering in the context of testing for and
against an increasing failure rate. Using LR tests, Robertson (1978) extended Chacko’s
results to testing for and against an arbitrary ordered alternative, and Dykstra and
Robertson (1982a) considered testing for and against the “star-shaped” alternative
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These tests all yield test statistics having an asymptotic chi-bar-squared distribution, the
form of which is described in Section 2.1. Lee (1987a) reported that n > Sc is sufficient
for this approximation when testing Hy: m; =--- =7, against an order restriction but
that slightly larger sample sizes are required when testing an order restriction against
the general alternative. Regarding ML fitting algorithms having usefulness that extends
to contingency tables, Dykstra and Lemke (1988) considered the setting in which log
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probabilities are in a closed, convex cone, and more generally, El Barmi and Dykstra
(1998) incorporated both general convexity constraints on the multinomial probabilities
and translated cone constraints on the log of the probability vector. Other relevant
references include Weisberg (1972), Lee (1977, 1980), Baras (1983a, b), Greenberg
(1985), Schervish (1985), and Sedransk et al. (1985).

2. Inequality-constrained methods for » X 2 contingency tables

We discuss first the case of a binary response variable Y with a single predictor
X having r ordered levels. Throughout this article, the columns refer to levels of the
response variable, so in this case the data form a » x 2 contingency table. Often, it is
reasonable to predict that P(Y=1|X =x), the probability of a “success” at level x of the
predictor, increases as x increases. Sometimes a set of ordered scores x| < x; < --- <X,
naturally apply to the levels of X, such as in dose-response studies with the ordered
levels refering to doses or log doses of the drug. To describe the predicted trend, one
might construct a generalized linear model in which X has a linear effect, on some
scale. For instance, one might use the linear logit model

logitfP(Y =1|X=x)]=0o+pfx;, i=1,...,r (1)

with the expectation that > 0. Alternatively, one might treat the explanatory variable
as a factor but impose a monotonicity constraint on effects of factor levels; that is,

P(Y=1|X=x))=a+ p, (2)

with ;) < fi <--- < f,. This article discusses both types of ordinal approach, linear
trends and inequality constraints, with main emphasis on the latter since it seems less
fully developed and discussed in other survey papers and in textbooks.

Let n;; denote the number of successes out of n; trials at level x; of X, and let
nip=n;—n;; and n=7y . n;. We assume that {n;;, i=1,...,r} are independent binomial
variates with parameters {m;=P(Y=1|X=x;), i=1,...,r}. Let p;=na/n;, i=1,....r,
denote the sample proportions. We first consider model (2), postponing discussion of
model (1) to Section 4, which presents more general logit and loglinear models.

2.1. Inequality constraints on several binomial parameters

Bartholomew (1959) presented one of the first tests for contingency tables employing
inequality constraints. For the several binomial problem, he proposed a test of Hy: 71 =
m, = --- =, against the simple order H,: m; < 1, < --- < m,; equivalently, in model
(2), Hy: py=---=p, and H,: p; < f; <--- < f,. Under Hy, the ML estimator of
m; is the overall sample proportion p = (3, ny1)/n. If py < p» <--- < p,, then the
order-restricted ML estimators {#;} of {m;} are {#; = p;}. Otherwise, one uses the
pool adjacent violators algorithm (Ayer et al., 1955; Robertson et al., 1988, Section
1.2) to pool “out-of-order” categories for which p; > p;.; until the resulting sample
proportions are monotone increasing. The order-restricted ML estimates {7} for the
original categories are the sample proportions for this partition of categories.
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Bartholomew’s test statistic equals the usual Pearson chi-squared statistic for test-
ing independence, applied to the counts in the collapsed table that combines rows
having sample proportions falling out of order. The large-sample null distribution of
Bartholomew’s test statistic, however, is not the usual chi-squared distribution. Like
most other tests in inequality-constrained inference for categorical data, the asymptotic
distribution is chi-bar-squared. This distribution refers to a mixture of independent
chi-squared random variables of form Y, pax3_,, where y3 is a chi-squared variate
with d degrees of freedom (with 73 = 0), and {p,} are a set of probabilities. For a
test statistic 7 with observed value ¢, the P-value for this distribution equals

P(T>10)=)  paP(g-1 > 1).
d=1

For applications of the chi-bar-squared distribution to inequality constrained problems
with a set of parameters, p; is the null probability that the inequality-constrained
estimators consist of d distinct sets on which these estimates are level (either because
of pooling or by chance). The {p,} are then called “level probabilities.” Robertson
et al. (1988, pp. 74-82) discussed calculation of {p;} for the case of independent
samples from normal populations with common means but different variances. They
then depend on the relative sizes of the r variances of sample means, and they equal
a sum of products of multivariate normal orthant probabilities. Unfortunately, even in
the normal case, {p,} do not have closed form except in certain simple cases such
as equal variances of the sample means. Robertson et al. provided a general recursive
algorithm for their calculation in the normal case. The level probabilities needed for the
order-restricted binomial problem and others discussed in this article for contingency
tables are traditionally approximated by the corresponding ones for the normal case,
with their adequacy for large-sample distribution theory being based on the approximate
normality of the sample proportions. The Robertson et al. text provided tables of critical
values for the chi-bar-squared distribution for »=3 and 4 (pp. 411-413) and for larger
r values for the equal sample size case (pp. 416, 418).

Barlow et al. (1972, p. 193), Shi (1991), and Oluyede (1994b) presented related
large-sample tests comparing binomial parameters. The former test is based on the ap-
proximate normality of the sample proportions, using tests for inequality constraints on
normal means and an inverse sine transformation to stabilize the variance. This would
not seem preferable to Bartholomew’s test, since it also relies on large-sample approx-
imations (the delta method and an asymptotic chi-bar-squared distribution) and since it
requires modification when n;; =0 or n;; =n;. In fact, Kulatunga et al. (1996) noted that
it is too liberal, tending to have actual size considerably larger than the nominal level.
Ramsey (1972) took a Bayesian approach to the ordered binomial problem by plac-
ing a Dirichlet prior on the successive probability differences, and Sackrowitz (1982)
recommended an adjusted estimate for situations when the ordinary ML estimate is
inadmissible under squared error loss. Robertson et al. (1988, p. 167) presented the
LR statistic for the inequality-constrained binomial problem as a special case of a LR
test comparing parameters for independent samples from a single-parameter exponen-
tial family distribution (Robertson and Wegman, 1978). The LR statistic for testing
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independence (/) in the r x 2 table, assuming the order-restricted (O) model (2), is
G*(110) = nylog(#:/p) + Y nalog[(1 — #)/(1 - p)].

This has the same general form as for the unrestricted case; the main difference is that
the expected values are computed under the restricted hypothesis. Again, the limiting
distribution is chi-bar-squared.

Robertson and Wright (1985) established the asymptotic chi-bar-squared distribution
for the binomial LR test under the partly specified ordering 7; > w for all i, where 7y is
the parameter under a control condition; see also Eeden (1956) and Dinh and Nguyen
(1994) for ML estimation in this situation. In the exponential family setting, Tsai
(1993) used Roy’s union-intersection (UI) principle to test against a general restricted
alternative. The resulting test statistic reduces to Rao’s efficient score test when testing
against the unrestricted alternative. Robertson et al. (1988, p. 164) also provided a
LR statistic of chi-bar-squared form for testing the null hypothesis of an inequality
constraint against the general alternative that at least two parameters are unequal.

The large-sample chi-bar-squared approximation for the distribution of LR statistics
and related statistics such as the Pearson may be inadequate if some null expected cell
counts are small or if a severe imbalance occurs in the binomial sample sizes. For
testing equality of binomial parameters against the simple ordered alternative, Bennett
(1962) presented a small-sample test for the equal sample size case, and Amundsen and
Ljogodt (1979) presented simpler tests applied to 2 x 2 tables obtained by ignoring or
collapsing rows. Soms (1985) described test statistics expressible as linear combinations
of the sample proportions, and Agresti and Coull (1996) presented tests using the LR
statistic. Liu (1998) presented a score test for testing equality against an ordering
that equates to the simple ordered alternative when the binomial parameters follow
a nondecreasing order. All of these tests use the standard exact conditional approach
of eliminating the unknown common value of {m; = n} under Hy by conditioning
on its sufficient statistic, ), n;;. The resulting hypergeometric distribution defined on
the » x 2 contingency table is free of unknown parameters, and it induces an exact
distribution for the test statistic. One can rapidly simulate from this distribution to
estimate as precisely as required the exact conditional P-value (Patefield, 1981). If n
is small or if the data mainly clump at a small number of levels of X or mainly have
outcomes at one of the levels of Y, the exact conditional distribution can be highly
discrete. As in other discrete problems, this causes conservativeness. Using a mid-P
value (the probability of more extreme test statistic values plus half the probability of
the observed value; see Lancaster, 1961) ameliorates this problem, though it loses the
guarantee that the actual size of the test is bounded above by the nominal size.

The inequality-constrained model (2) extends to multiple predictors. Gebhardt (1970),
Dykstra and Robertson (1982a, b), Lee (1983), and Block et al. (1994) considered esti-
mation for such models, and Eddy et al. (1995) and Fygenson (1997) modeled binary
responses in this context. In practice, it might be sensible to treat some predictors
with structured forms such as linear trends, some as qualitative factors, and some
with inequality constraints on parameters. So far, there seems to be little literature on
such models in the context of generalized linear modeling for discrete data. For two
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Table 1
Responses from a clinical trial comparing four treatments on extent of trauma due to subarachnoid hemorrhage
Treatment Outcome
group
Death Vegetative state Major disability Minor disability Good recovery
Placebo 59 25 46 48 32
Low dose 48 21 44 47 30
Medium dose 44 14 54 64 31
High dose 43 4 49 58 41

Source of data: Dr. Christy Chuang-Stein, Pharmacia & Upjohn Company.

predictors and a binary response, Eddy et al. (1995) studied the isotonic model
logit[P(Y =1|x1,x2)] = f(x1,x2),

where f is monotone increasing in each argument. They noted, however, that no test yet
exists for comparing this model to the linear logit special case f(x,x2)=0+f1x;+ faxa
with 1 > 0 and S, > 0. For such an isotonic model, it would be useful also to have
a mechanism for constructing a confidence interval for P(Y = 1]|x;,x,) at fixed values
of x; and x;; presumably a bootstrap method could be used when the computations are
feasible. It would also be useful to develop descriptive measures for summarizing the
effects of the predictors in such models.

2.2. Example

Throughout this article, we illustrate order-restricted methods for contingency tables
using Table 1, taken from Chuang-Stein and Agresti (1997). This 4 x 5 contingency
table refers to a clinical trial regarding the outcome for patients who experienced trauma
due to subarachnoid hemorrhage. The five response categories are ordered, ranging from
‘death’ to ‘good recovery.” The table has four ordered treatment groups, corresponding
to three dose levels of a medication and a vehicle infusion serving as a control group.
(Due to company confidentiality requirements it is not possible to say more about the
drug.) A study objective was to determine whether a more favorable outcome tends to
occur as the dose increases.

To illustrate an inequality-constrained test for several binomials, we compare the
four treatment groups in terms of whether they fall into response category 1 (death) or
one of the other categories; that is, we collapse Table 1 into a 4 x 2 table. The sample
proportions of death are (0.281, 0.253, 0.213, 0.221). The ML fitted probabilities un-
der the restriction 7; > m, > w3 > 7y are (0.281, 0.253, 0.216, 0.216), where 0.216 =
(44+43)/(207+195). The LR statistic for testing equality against this ordered alterna-
tive equals 3.27. Using the recursive formulas for the level probabilities in Robertson
et al. (1988, pp. 74-82), we obtain estimates (0.251, 0.459, 0.249, 0.041) of {p,}.
The large-sample chi-bar squared distribution (Robertson et al., 1988, p. 164) yields a
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P-value of
P =0.251(0) + 0.459P(} = 3.27) + 0.249P(y3 = 3.27)
+0.041P(y2 > 3.27) = 0.0954.

Simulating from the exact conditional null distribution, we obtain P = 0.0955, with
a 95% confidence interval for the true exact P of (0.0951, 0.0959). Here asymptotic
and exact results are essentially identical, but this need not be true in general. For
comparison, the chi-squared test of independence against the unrestricted alternative
yields LR statistic 3.30 (df =3) and P = 0.35.

By contrast, suppose we combine the first two response categories and separately
combine the final three categories, and test for a monotone decrease in the probability
of death or vegetative state. The sample proportions (0.400, 0.363, 0.280, 0.241) are
then identical to the order-restricted fit, so the LR statistic is identical for the ordered
and the unrestricted alternatives. The P-values are 0.0003 for both the order-restricted
chi-bar-squared and exact tests (again, the P-values are different in general) and 0.002
for the unrestricted alternative.

3. Inequality-constrained methods for odds ratios in contingency tables

We next consider r X ¢ contingency tables. We first suppose that both X and Y
are ordinal. Denote the cell counts by {n;}, with total n, and let n;, = Zj n;; and

ny;= Z[ nij. Let
fori=1,...,r, j=1,...,c. One can describe the association in this table using various

types of odds ratios, with a set of (r—1)(c—1) of them fully specifying the association
structure. Possible sets of such odds ratios include:

1. Cumulative (or “local-global”) odds ratios,
0, — i1/ (1 =750 ’
“/j\i+1/(1 - Vj|i+|)
2. Local odds ratios,
0. — 7?,'+1\i+1/7fj|i+1
l 7Tj+1\i/ﬂj|i
3. Global odds ratios,
P(Y <jlX <i)/P(Y > jlX <i)
PTPY <JIX > )P(Y > jIX > i)

4. Continuation odds ratios,
_ P(Y=j|IX=0)/P(Y > jIX =1i)
~ P(Y =j|X > i)/P(Y > jIX > i)
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il it i+l it
i i i i
i+1 i+1 i+1 i+1
Cumulative Local Global Continuation

Fig. 1. Four sets of (r—1)(c—1) odds ratios for ordinal variables: cumulative, local, global, and continuation.

Fig. 1 illustrates these four odds ratios, which are special cases of generalized odds
ratios formed with four adjacent cells by collapsing row and column classifications into
dichotomies. For other examples of such odds ratios and for a variety of results about
relationships among them, see Lehmann (1966), Dale (1984), Grove (1984, 1986),
Douglas et al. (1990), Barnhart and Sampson (1994), and Oluyede (1994a).

One can construct a separate and nonequivalent set of continuation odds ratios by ap-
plying that formula after reversing the category order for both variables. Either of these
forms refer to a set of tables for which the usual LR statistic for testing independence
partitions into the sum of (» — 1)(c — 1) components, where each component is the LR
statistic computed for a 2 x 2 table (Lancaster, 1949); this is not the case with the other
odds ratios discussed. The local, global, and continuation odds ratios are invariant to
switching the roles of X and Y. The cumulative odds ratios are not invariant. Because
of their asymmetric form, they make most sense when Y alone is a response variable,
whereas the others are also relevant when both variables are response variables. The
conditional distribution of Y at level i + 1 of X is stochastically larger than the one
at level i of X if y;;, = 7;,4 for all j. The condition of uniformly nonnegative log
cumulative odds ratios is equivalent to Y being stochastically increasing in X.

For any particular set of odds ratios, one can define a positive association between X
and Y by nonnegative values of all (r—1)(c¢— 1) log odds ratios. Denote this condition
by L for the local odds ratios, G for the global odds ratios, S for the cumulative odds
ratios (i.e., S for stochastic ordering), and C for the continuation odds ratios. Tables
satisfying the L restriction are sometimes referred to as totally positive of order two
(Douglas and Fienberg, 1990; Douglas et al., 1990). Of these conditions,

L implies S implies G and L implies C implies G.

One could conduct inequality-constrained inference for » X ¢ contingency tables by ex-
pressing the inference in terms of one of these conditions. For instance, one could obtain
ML estimates of cell probabilities subject to such a condition, and one could construct
tests of independence against it. In applications that distinguish between response and
explanatory variables, it is usually natural to treat the » rows as independent multino-
mial samples, treating {n;, } as fixed. In this setting, most work deals with comparing
two groups (r =2).
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3.1. Comparisons of two multinomial distributions for various odds ratios

This section considers the special case, » = 2; that is, X is binary and the response
variable Y has ¢ ordered categories. Such tables often result from the comparison of
two groups in terms of which tends to make the higher response, in some sense. In
this case, Oh (1995) discussed estimation of cell probabilities under S, L, G, and
C alternatives under single multinomial, product multinomial, and Poisson sampling
schemes.

In the 2 x ¢ case, the L condition is also called likelihood-ratio ordering (Lehmann,
1966). Dykstra and Lemke (1988) showed how to obtain the ML fit for this condition,
and Dykstra et al. (1995) gave the LR test of whether two multinomial distributions are
identical against it. The L condition is equivalent to ¢ monotone decreasing binomial
probabilities when one reverses orientation and considers the distribution of X given
Y (i.e., fixing the column totals rather than the row totals). The LR test of identical
multinomials against L (and the ML fit) is apparently equivalent to the one for com-
paring ¢ independent binomial proportions against that simple ordered alternative in
the distribution of X given Y; that is, the test considered by Robertson et al. (1988,
p. 167). For comparing two multinomial distributions, Gautam et al. (1999) proposed
using as test statistic the maximum possible squared correlation between the classifica-
tions, with maximum taken over all possible increasing scores for the columns. They
showed that their test is asymptotically equivalent to the likelihood-ratio test for the
two-sided alternative that one population is larger than the other with respect to the L
condition.

For 2 x ¢ tables, the global and cumulative odds ratios are identical, so the conditions
S and G are equivalent. The ML estimates of the two sets of multinomial probabilities,
assuming a stochastic ordering, were derived by Brunk et al. (1966). Let rj=(ny+-- -+
ni;)/(na14- - -+ny;), j=1,...,c. The ¢ columns are divided into subsets as follows: The
first subset ends at the column v; for which r,, is the minimum of {ry,...,r.}. If this
does not include all columns, then the next subset consists of columns {v; + 1,...,v;}
such that 7,, is the minimum of {r, ;1,...,7.}. One continues in this manner, forming
the collection of subsets. Grove (1980) provided a geometric representation of this
construction. In this construction of subsets, suppose a particular subset consists of
columns a,a+1,...,b. Then the ML fitted value under the stochastic ordering restriction
for cell (4,7) in those columns equals

0 Mg+ +np)(nig)
Y (g + o+ np)(n)

Note that when a = b (i.e.,, a subset contains a single column), the fitted value in
that cell equals the fitted value for the independence model, namely (n4;n;.)/n. The
construction yields a single subset when the minimum ratio of cumulative proportions
for row 1 to row 2 equals 1, the value for the final column. In that case, the sam-
ple counts themselves satisfy condition S, and the ML fitted values are simply those
sample counts. Dykstra et al. (1996) showed that ML and various other estimation
procedures for S are related and can be expressed in terms of a weighted least squares
projection.
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Grove (1980), Robertson and Wright (1981), and Bhattacharya and Dykstra (1994)
discussed the LR test of whether two multinomial distributions are identical against
the S alternative. See Lee (1987b), Lucas and Wright (1991), and Silvapulle (1994)
for related tests. Lee et al. (1993) considered the S alternative with the additional
constraint that the probabilities for one of the populations are monotone. Takeuchi
and Hirotsu (1982) and Nair (1987) proposed cumulative chi-squared-type (CCS-type)
tests designed for the S alternative and the ordered binomial alternative of Section 2.
These tests are based on weighted sums of Pearson chi-square statistics from the 2 x 2
tables that result from the ¢ — 1 collapsings of the response into a binary outcome.
These authors gave the asymptotic distribution and power for this class of statistics,
and generalized the method to an arbitrary number of rows. Cohen, Sacrowitz, and
colleagues (Berger and Sackrowitz, 1997; Cohen and Sackrowitz, 1998; Cohen et al.,
2000) discussed a complete class of tests for the S alternative and provided conditions
for tests to be unbiased, conditionally unbiased, and in the complete class. Their tests
have a rather complex construction for finding the P-value, but the latter paper is highly
critical of the LR test for the S alternative, as discussed later.

The C alternative, which corresponds to the condition of uniform stochastic order-
ing (Dykstra et al., 1991), has received considerably less attention than L or S. Grove
(1984) proposed the LR statistic for comparing two multinomial populations against C,
and Oluyede (1993a, b) presented an asymptotically equivalent statistic with Pearson
components.

All asymptotic distributions for the various tests for 2 x ¢ tables are chi-bar-squared.
Unfortunately, the weights {p,} for such distributions are unknown parameters because
they depend on the common unknown multinomial probabilities; presumably, this may
be problematic for small or unbalanced samples. For the S alternative, Wang (1996)
showed that the asymptotic approximation performs well for small to moderate samples
when {n;,} are approximately equal (e.g., n1+ = np+ = 30) but rapidly deteriorates as
the sample sizes become unbalanced. Grove (1980) for S and Dykstra et al. (1995) for
L suggested bypassing such calculations by instead using the simpler approximation of
the P-value that applies when the column totals are equal; in that case, simple recursive
formulas exist for the weights in the chi-bar-squared distribution and tables of critical
values exist for the distribution (Robertson et al., 1988, pp. 82, 416). To bypass possibly
poor asymptotic approximations, we recommend simulating exact conditional tests for
the LR test statistic (Agresti and Coull, 1998b).

3.2. Analyses for odds ratios in r x ¢ tables

We now turn our attention to » X ¢ tables, for which the research literature is more
sparse. Denote the LR statistics for testing independence against the various ordered
alternatives by G*(I|G), G*(1|S), G*(I|C), G*(I|L). These all have the general form
DI log(ﬁ;’“/ﬁf‘i), where {ﬁf‘ ;=nyj/n} are the estimated probabilities under in-
dependence and {7};} are the ML estimates under the alternative. Denote the LR
statistic for the general, unrestricted, alternative by G*(I).

Patefield (1982) suggested the L condition as a natural alternative for tests of in-
dependence with ordinal data. He noted, however, the computational complexity of
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LR tests because of the lack of closed form for the fitted values under that alterna-
tive. Using /-projection geometry, Dykstra and Lemke (1988) provided an algorithm
for finding the ML fitted values under L and linked this order-restriction to the pos-
itive dependence concept of concordance; however they did not derive an asymptotic
distribution for G?(I|L). The algorithm in El Barmi and Dykstra (1998) can also be
used for this purpose. Cohen and Sackrowitz (1992) studied other ordinal statistics that
are sometimes used for this alternative. They showed that certain tests, such as one
based on numbers of concordant and discordant pairs, are sometimes inadmissible, and
suggested a refinement of the usual P-value to reduce the degree of discreteness.

For the S alternative, Feltz and Dykstra (1985) noted that no closed form exists for
the ML fit when » > 2. Wang (1996) suggested using an approximate test, such as
one based on the bootstrap. Bhattacharya and Nandram (1996) and Evans et al. (1997)
presented Bayesian analyses for this alternative.

Again, there is less work for the C condition. Grove (1984) and Oluyede (1994a)
proposed large-sample chi-bar-squared tests (not LR) of independence against that
alternative.

Dardanoni and Forcina (1998) provided a unified inference for the S and L alterna-
tives. They demonstrated that each has form

g(n) =Xp, Kp=>0, 3)

where g, X, and K are specific to the type of ordering, and they applied a constrained
Fisher scoring algorithm to maximize the log-likelihood subject to (3). They proved
that the asymptotic distributions of the LR tests of independence against a particular
alternative are of chi-bar squared form. They also showed that the LR tests of an
inequality-constrained hypothesis against the general alternative have asymptotic dis-
tributions stochastically bounded above by a sum of chi-squared and chi-bar squared
random variables.

Even for statistics that have limiting chi-bar-squared distributions, as in the 2 x ¢
case the weights must be estimated. We are unaware of any work evaluating conditions
under which the chi-bar-squared approximations hold well for the » x ¢ case, but the
results of Wang (1996) suggest that the approximation may fail for small samples or
unbalanced data sets. Agresti and Coull (1998b), who used an optimization program to
obtain the ML fits for G, S, L, and C alternatives, suggested Monte Carlo simulation
of exact conditional tests based on the LR test statistic.

Of the conditions {G,S,C,L}, L is the most restrictive. If L holds, in other words,
then so do the other conditions. The nesting of L within S and C, which them-
selves are nested within G, implies that G*(1|L) < G*(I|S) < G*(I|G) and G*(I|L) <
G*(1|C) < G*(I|G) and implies corresponding stochastic orderings of the null distri-
butions. When the sample satisfies L, all four order-restricted fits and LR test statistics
are identical (in fact, identical to G?(I)). Hence, the P-values have the ordering in-
duced by the null distributions, that for G>(/|L) being smallest. In practice, if the data
nearly satisfy all the order restrictions, it is our experience that the L criterion usually
provides the smallest P-value. Agresti and Coull (1998b) noted that if the true local
log odds ratios are strictly positive, then the LR test based on it is asymptotically more
powerful than the others.
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The methods discussed in this section treat both X and Y as ordinal. When X and
Y are nominal, it would not normally make sense to impose order restrictions. When
one (say X) is nominal and one (say Y) is ordinal, restrictions involving Y may
be of interest. One possible restriction states that the rows are stochastically ordered
on Y, but the ordering of the rows is unknown. For instance, in comparing several
treatments on Y, one might expect the response distributions for the treatments to be
an unknown family of distributions that differ in location but not dispersion, yet one
may have no prior prediction about the relative merits of the treatments. We have
not seen any literature on ML estimation or LR tests for this alternative. Though not
elegant, one could obtain the ML fit by comparing the log likelihoods for the fits
for all »! possible orderings. One could then use this minimum LR statistic as the
criterion in a simulated exact test of independence. For this problem, Evans et al.
(1997) used Bayesian methods to fit all ! stochastic orderings. The authors evaluated
which orderings are most plausible using Bayes factors and by comparing the prior
and posterior distributions of a measure of the distance between the cell probabilities
and the given stochastic ordering.

We are also unaware of any literature, other than Sampson and Singh (2002), on
inequality constraints for partially ordered scales. For instance, X and/or ¥ could have
ordered scales except for a category such as “don’t know” or “undecided.” Then,
one might conduct inference subject to a condition such as L applying to the lo-
cal odds ratios involving the ordinal categories. More generally, one could formulate
“quasi-order-restricted models” by imposing constraints over a certain subset of a con-
tingency table.

The discussion in this section shows that the emphasis in most of the order-restricted
literature is on hypothesis testing rather than estimation, especially interval estimation.
For any of the conditions discussed, it would seem to be more informative to pro-
vide confidence intervals for cell probabilities, odds ratios, or other effect measures,
than to test hypotheses that would rarely be plausible. Standard methods would seem
to be difficult to apply, but presumably recent computational advances make meth-
ods such as the bootstrap increasingly feasible. Model comparison issues also need
much exploration. For instance, how does one decide whether a condition such as S
provides a significantly better fit than a special case such as L or such as a certain
ordinal model that satisfies S (such as model (4) discussed below)? The LR (deviance)
statistic comparing models S and L does not have a chi-squared distribution. For in-
stance, the number of parameters is the same for the two models, and one cannot
express L as an interior point of the parameter space of S with a certain set of para-
meters equal to 0 (In fact, when L holds with strictly positive true local log odds
ratios, then the likelihood-ratio statistic equals 0 with probability converging to 1 as n
increases).

Finally, one could use other association measures besides the odds ratio to de-
tect trends in ordinal contingency tables. These include, for instance, generalizations
of Kendall’s tau based on concordance and discordance (see, e.g., Cohen and Sack-
rowitz, 1992). Such statistics can serve as the basis of tests for trend such as the well
known linear trend tests proposed by Mantel, Cochran, Armitage and many others. Rao
et al. (1987) and Nguyen and Sampson (1987) proposed tests expressed in terms of
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global odds ratios based on concordance and discordance. For 2 x ¢ tables, Kimel-
dorf et al. (1992) used the isotonic regression techniques of Section 2.1 for binomial
responses to find the maximum and minimum values of the sample correlation and
of standard test statistics, among the possible values for all possible sets of increas-
ing column scores. Sampson and Singh (2002) extended this to cases having only
a partial ordering of categories. Podgor et al. (1996) showed how to use efficiency
robustness principles to combine tests from two or more sets of scores into one ro-
bust test for analysis, in such a way as to minimize the worst possible efficiency loss
over all the sets of scores. In addition, nonparametric methods that take category or-
dering into account such as the Jonckeere—Terpstra test and the Kolmogorov—Smirnoff
test can be adapted to contingency tables (Cytel Software, 1995, pp. 305-311). Al-
ternatively, one might use the approximate approach of treating an ordinal response
as normal with constant variance; one can then use methods developed for testing
equality of normal means against order-restricted alternatives. See Chuang-Stein and
Agresti (1997) for a discussion of such approaches. We do not consider them here,
since they do not utilize the categorical nature of the data. For instance, they do not
provide a structure that yields fitted values that one can compare to observed cell
counts. In this sense, the model-building approaches described in Section 4 are more
appropriate.

3.3. Dose—response example revisited

In analyzing Table 1, we first test whether a more favorable outcome occurs when a
patient receives treatment (regardless of dose) by applying the methods of Section 3.1
to the 2 x ¢ table that results from collapsing the final three rows. All four cumulative
log odds ratios in the collapsed table exceed 0, so G*(I|S) = G*(I)=9.6. Two of the
local log odds ratios violate the ordering, and the LR statistic for the L alternative
equals 7.9. The exact P-values for the unrestricted, S, and L alternatives are 0.048,
0.023, and 0.012, respectively. The order-restricted tests provide somewhat stronger
evidence against independence than the chi-squared test of independence.

For the full table, similar substantive results occur for tests of independence with
the various ordered alternatives for odds ratios; for the L, S, and G alternatives, the
P-values based on simulated exact conditional tests are all at most 0.002. All the
sample global log odds ratios exceed 0, so G*(I|G) = 27.8 is identical to G*(/). The
latter statistic, which is approximately chi-squared with df = 12, has P = 0.006, so
in this case using ordinal inequality constraints does not much enhance the degree of
evidence against independence. For the S alternative, two of the 12 sample cumulative
odds ratios violate the S order restriction, but barely, and G*(/|S) = 27.7. For the L
alternative, five of the sample odds ratios violate it, and its fit is somewhat different
from the observed data, giving G*(/|L) = 16.1. Nonetheless, as mentioned above, its
null distribution is stochastically lower, and this value is also sufficient to provide
strong evidence of association (P = 0.002).

In using these test statistics, one should realize that a small P-value does not suggest
that the order restriction truly holds, but merely that strong evidence exists against the
null hypothesis of independence, based on that test criterion. In fact, it is possible to



58 A. Agresti, B.A. Coull| Journal of Statistical Planning and Inference 107 (2002) 45-73

obtain small P-values even if some of the sample odds ratios violate the inequality
constraints, as the results just given for G*(1|S) and G*(I|L) illustrate.

3.4. Anomalies with likelihood-ratio tests?

Recent evidence suggests that certain ML order-restricted fits and corresponding LR
tests can behave in a counterintuitive manner. Even if all the sample log odds ratios are
negative, many of the fitted log odds ratios may be strictly positive. A relatively small
P-value may occur even though many, perhaps all, of the sample odds ratios contradict
the order restriction. For instance, in Table 1 suppose the alternative of interest is G for
the reverse ordering of the rows. All sample global log odds ratios are then negative,
but the constrained fit for an alternative of nonnegative associations is not the fit of the
independence model. In fact, 5 of the 12 fitted log odds ratios for the G constraints
are then strictly positive and G*(I|G) = 11.8 with P = 0.26, even though each sample
odds ratio contradicts G.

Of the tests discussed in this section, in our experience the one based on G*(I|L) is
least likely to provide seemingly anomalous results when the data strongly contradict
the order restriction. To illustrate, suppose that every sample local log odds ratio vio-
lates L. Then, using properties of related loglinear models, Agresti and Coull (1998b)
argued that the L fit is identical to the independence fit; thus, G*(/|L)=0.0 and P=1.0,
which seems sensible.

Cohen and Sackrowitz (1998) and Cohen et al. (2000) claimed that the LR test
is inappropriate for various constrained alternatives, including G*(/|S). Cohen et al.
argued that LR tests for testing equality of means for independent samples from
an exponential family distribution are adequate for the simple order alternative of
form ) < pp < --- < yy but can show anomalous behavior for most other inequality-
constrained alternatives.

Perlman and Wu (1999) discussed in detail several papers, including those just
mentioned, that have noted apparent anomalies of LR tests for inequality-constrained
alternatives in various contexts. They argued that the examples used by Cohen and
colleagues are not truly anomalous. Specifically, they argued that seemingly counter-
intuitive results that occur when the sample data fall outside the parameter spaces de-
scribed by the null and alternative hypotheses may partly reflect a null that is too sharp.
They claimed that such results would not occur if testing were instead done with a
null hypothesis consisting of the entire complement of the order-restricted space, rather
than a small subset such as independence. Their arguments seem reasonable, but tests
for such broader nulls have not yet been developed in the categorical case. This is
an interesting and important area for future research. Meanwhile, order-restricted infer-
ence with sharper (or nonconvex) nulls should be used with caution when the sample
data seem strongly inconsistent with both hypotheses. Again, we emphasize that a
small P-value in an order-restricted test does not suggest that the order restriction truly
holds, but merely that criterion provides strong evidence against the null. An analogy
occurs in regression analysis, in which a test based on the slope may provide strong
evidence against independence, even though we would not want to conclude that the
true relationship is therefore exactly linear.



A. Agresti, B.A. Coulll Journal of Statistical Planning and Inference 107 (2002) 45-73 59
4. Inequality constraints on parameters in parametric models

Each monotonicity condition described in the previous section generalizes a particular
logit or loglinear model that satisfies the condition. This section discusses these models.
Unless specified otherwise, the models treat both X and Y as ordinal.

4.1. Multinomial logit models

The cumulative logit model:
logit[y;;] = o; — Bx; 4)

uses logits of cumulative probabilities to provide a stochastic ordering of levels of
X. It has the proportional odds property whereby the effect f is the same for each
cumulative probability. The ordinary linear logit model (1) is the special case of this
model with ¢ = 2. The usual approach is to assign monotone increasing scores {x;}.
Then, when f§ > 0, this model directly implies condition S; it has been pointed out to
us by A. Forcina that this case also satisfies condition L (personal communication). For
the equally spaced scores {x; =i}, exp(f) is the cumulative odds ratio for each of the
(r—1) (¢c—1) 2 x 2 tables formed using each pair of adjacent rows and a collapsing
of the response above and below any particular cutpoint j. The independence model is
the special case of (4) with §=0.

ML fitting of model (4) (which is available in standard software, as discussed later)
results in cell fitted values that can be compared to {n;} with standard chi-squared
statistics as a way of checking model goodness-of-fit. In addition, when we allow all
real values for f8, inference for f§ follows standard methods, such as the LR, score, or
Wald-based tests and confidence intervals. One can use the sign of f§ times the square
roots of the test statistics as approximately standard normal test statistics (under the
null) for one-sided alternatives such as f§ > 0. If the model holds, more parsimonious
and more powerful inferences result than with the model replacing {fx;} by unordered
parameters {f3;} (hence treating X as nominal), since the same chi-squared noncentrality
is focused on a smaller df value. For the restricted parameter case of testing f =0
against § > 0 without permitting negative values of f§, under the null the usual statistics
have large-sample distribution that is an equal mixture of degenerate at 0 (when the
ordinary ML estimate B would be negative) and chi-squared with df =1. The asymptotic
power advantage when truly f > 0 is the same as from doing a one-sided test with
unrestricted f.

The cumulative logit form of model (4) is currently a popular one for modeling
ordinal data. Although the use of a common effect f for each cumulative probability
seems restrictive, it has connections with regression modeling of underlying continuous
variables (McCullagh, 1980), and the more general model with effects {f;} has the
structural problem that cumulative probabilities are misordered for some values of x.
One could alternatively use transformations of the cumulative probability other than
the logit, such as the probit and nonsymmetric ones (e.g., log—log and complementary
log—log) for which the cumulative probability approaches 0 at a different rate than it ap-
proaches 1 (McCullagh, 1980). These alternative link functions maintain the stochastic
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order restriction but without maintaining identical values of the odds ratios for different
j. Other alternative models include ones that apply logits or other transforms to prob-
abilities other than the cumulative probabilities. For instance, the adjacent-categories
logit model
log(7jy1)i/mjji) = o + Bxi,

or generalizations of it that treat predictors as nominal factors, are related to loglinear
models described in the next subsection (Agresti, 1984, 1996). This model form, which
has natural connections with structures for local odds ratios, also implies stochastic
orderings and usually fits well in the same situations that model (4) does.

Just as the linear logit model (1) generalizes to a model (2) with ordered effects of a
factor, these models can do the same by replacing fx; by f; with f1 =, = --- = f,.

This generalization, which does not seem to have been addressed in the literature,
provides greater flexibility but with a loss in parsimony and a potential loss in power.

4.2. Loglinear and association models

The cumulative logit model distinguishes between the response and explanatory vari-
ables. The linear-by-linear association model

log[P(X =i, Y =)=+ 4 + 4] + Pxiy; (5)

is a loglinear model that has increasing row scores {x;} and column scores {y;} and
treats the variables symmetrically (For identifiability, one needs constraints such as
=Y =0). With the equally spaced scores {x; =i} and {y; =}, all (r — 1)(c — 1)
of the local odds ratios are identical to exp(f}). When f > 0, this model implies con-
dition L. To test Hy: f =0 against H,: f#0, one can use standard LR, score, or Wald
statistics, all of which have asymptotic chi-squared distributions with df = 1. For the
one-sided alternative, their signed square root is approximately standard normal under
the null; or, restricting the parameter to be nonnegative results in the squared statis-
tics having asymptotic distributions that are an equal mixture of degenerate at 0 and
chi-squared with df =1. For small samples, one can use conditional methods to conduct
an exact small-sample one-sided test. This test is available in the software StatXact
(Cytel Software, 1995).

More general models in which {y; = fx;} or {v; = fy;} are parameters treat those
classifications as nominal. In some applications, it is reasonable to use the model
assuming ordered scores but without specifying values for those scores. Agresti et al.
(1987) considered ML fitting of this model when {v;} are fixed but {y} are known
only to be monotone increasing. Dykstra and Lemke (1988) provided an alternative
fitting procedure for this case, and Ritov and Gilula (1991) extended this to the case
where both {y;} and {v;} are unknown but assumed to be increasing. These generalized
models with inequality-constrained scores all are special cases of condition L.

Cumulative logit models can be described with cumulative odds ratios and linear-by-
linear association models and other ordinal loglinear models can be described with
local odds ratios. Relatively less attention has been paid to models for global odds
ratios. For two-way tables, Plackett (1965) proposed a quadrant dependence model in
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which each global odds ratio is identical (see also Wahrendorf, 1980; Dale, 1986).
This model, together with a positive sign for those log odds ratios, implies condition
G. See Molenberghs and Lesaffre (1994) for an extension to multivariate responses
with covariates. Of these three types of models for odds ratios, the cumulative logit
models generalize most naturally to standard regression settings with a single response
variable and several predictors, since they explicitly distinguish between response and
explanatory variables whereas loglinear and association models do not. That model also
generalizes to the mixed model setting in which correlations among repeated responses
are generated using random effects in the model; see, for instance, Hedeker and Gibbons
(1994).

The ordinal models with either fixed scores or qualitative factors for ordinal pre-
dictors have become quite popular in applications. By contrast, inequality-constrained
models with ordered but unspecified parameter scores have not seen much application.
Although they have the advantage of greater generality compared to models assuming
a linear trend for fixed scores, there is the potential of loss of power from the addition
of parameters (e.g., the linear trend models have only a single association parameter),
and the user can no longer rely on standard chi-squared tests and confidence inter-
vals for the effects. Moreover, there are also potential pitfalls that need investigation.
For instance, Section 3.4 alluded to possible anomalies with LR tests for inequality
constraints on some log odds ratios. It is of interest to study this in more detail and
investigate the suitability or unsuitability of order-restricted inferences for related mod-
els that are described by such odds ratios. In particular, following Perlman and Wu
(1999), it may be of interest to develop tests in which the null hypothesis is the entire
complement of the model’s inequality-constrained space.

Finally, there are less-commonly used classes of models, not discussed here, for
which parameters have no connection with odds ratios. For instance, Goodman (1985,
1996) noted similarities between association models such as (5) and correlation models
and correspondence analysis models. These other types of models also have score
parameters for which order restrictions may be useful. See Bockenholt and Bockenholt
(1990), Parsa and Smith (1993), Ritov and Gilula (1993), and Takane et al. (1991)
for work in this direction.

4.3. Dose-response example revisited

One can fit cumulative logit models (such as model (4)) with various commercially
available software; for instance, it is the default option for multinomial modeling with
PROC LOGISTIC in SAS. One can fit loglinear models such as the linear-by-linear
association model (5) with any software for generalized linear models, such as PROC
GENMOD in SAS. See, for instance, Agresti (1996) for details.

Using dose scores (1,2,3,4) with Table 1, the cumulative logit model has /?20.176
(standard error=0.056). The LR statistic for testing that f = 0 equals 9.6, and the
signed square root of 3.1 has a one-sided P-value of 0.001 for the alternative f§ > 0.
Similar substantive results occur for other ordinal models using a single parameter to
describe a linear trend. For instance, the linear-by-linear association model (5) has
signed square root of the LR statistic equal to 3.1 (P = 0.001). In summary, ordinal
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LR test statistics provide strong evidence against independence, whether we measure
the evidence using fits with inequality constraints assuming nonnegative log odds ratios
or using a common nonnegative value for certain log odds ratios.

5. Extensions to multi-way tables and multivariate responses

In practice these days, multiway contingency tables are more common than two-way
tables. In some cases the extra dimensions refer to additional covariates, such as in
a biomedical study that stratifies for several age groups or medical centers. In other
cases the many dimensions result from the categorical response being multivariate; a
common example is when a categorical response is measured repeatedly, such as in a
longitudinal study. There does not seem to be much literature on inequality-constrained
methods for such cases, although some of the methods of the previous three sections
apparently generalize fairly directly.

5.1. Stratified data

To illustrate, let Z denote a control variable, and let 0;;4) denote an odds ratio
computed between X and Y in partial table k¥ of Z, k =1,...,K. If Y alone is the
response, the cumulative odds ratio may be most natural, whereas if X and Y are
responses then the local or global odds ratio may be preferred. For any definition
of positive association, one could estimate cell probabilities within each partial table,
subject to that constraint. In addition, one could test conditional independence of X
and Y, given Z, against the alternative

loglijuy =0, i=1,...,r—1, j=1,..,c—1, k=1,...,K.

The LR statistic is the sum of the LR statistics from applying the test of the previous
section separately to each partial table. This stratified test refers to a large number of
parameters, particularly if K is large, which is disadvantageous to power.

When one expects the true pattern of association to be similar in each partial table,
more powerful tests can take advantage of this similarity. One can do this, in the spirit
of the Cochran—-Mantel-Haenszel test for stratified 2 x 2 tables, by basing the test on
the common odds ratio structure

Oy = -+ = Oy

for all i and j. One maximizes the likelihood for the three-way table subject to the
constraint that the logs of these (» — 1)(¢ — 1) parameters simultaneously are at least
0. In practice, such a test can have a substantial power advantage (especially for large
K) unless there is actually severe heterogeneity. See Agresti and Coull (1998b) for
details.

A more fully parametric approach generalizes basic logit and loglinear models. For
instance, the extension of the linear-by-linear association model (5) to

log[P(X =i,Y =j,Z =k)] = A+ if + A 4+ + 27 + 1 + By (6)
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assumes that each conditional local odds ratio between X and Y is homogeneous across
levels of Z. The pattern is determined by the scores {x;} and {y;} and the strength
is determined by f; specifically, log0;jx) = B(uiv1 — u;)(vj41 — v;). Similarly, it is
straightforward to add a stratification factor to the cumulative logit model (4).

Another order-restricted approach for stratified tables specifies an ordering among
strata. For 2 x 2 x K tables, denote the odds ratio for the kth stratum by 0. Anraku
(1994) obtained conditional ML and Mantel-Haenszel estimates of 6 = (6,...,0k)
under the restriction 8; < --- < Og; see El Barmi (1997) for related work. Alternatively,
one could use logit or loglinear models specifying alternatives such as a linear trend
in log odds ratios across the strata. For stratified » x ¢ contingency tables, one can
consider a heterogeneous association version of (6) that replaces f§ by fi, and then use
alternatives such as f§; <--- < fx or a linear trend in {f;}. Sampson and Whitaker
(1989) obtained ML estimates of cell probabilities when one stratum is assumed to
be stochastically larger than a second one. Specifically, in each of two layers of an
r X ¢ x 2 table, this stochastic ordering alternative is

N PX=iY=jZ=1)> Y PX=iY=j|Z=2)
(i,j)eU (i,j)eU

for all sets U satisfying (i,j) €U and i < i, j <j = (i,j))eU.

As in the two-way case, it is unclear whether LR statistics with inequality constraints
can have undesirable properties. Presumably analyses based on the local odds ratio
behave reasonably, because of the connection with loglinear models. Here there is also
much room for work on interval estimation based on inequality-constrained models.
Likewise, as the number of predictors increases, there is scope for addressing issues
of model comparison and selection.

5.2. Marginal homogeneity for multivariate responses

A somewhat different multi-way contingency table problem results from repeated
measurement of a categorical response. Specifically, suppose a multivariate response has
the same ordered categorical scale for each component. One such application is when
subjects in a survey provide their opinion about several related items, such as whether
government spending should (increase, stay the same, decrease) for defense, health,
education, the environment, and so forth. Another application is when a longitudinal
study measures the same variable on the same subjects at several time points. In such
cases, it is often of interest to compare the marginal distributions; for instance, to
analyze whether subjects tend to prefer higher government spending on health or on
the environment.

El Barmi and Dykstra (1995) gave general results for tests pertaining to multino-
mial probabilities that, as a special case, can provide direct comparisons of marginal
distributions. For instance, consider the case of » =2 repeated responses. One can then
express models in terms of a square ¢ X ¢ contingency table, with the same categories
in each dimension, that cross classifies the first and the second response. For the cell
probabilities {7;;} in such a square table, one might be interested in the stochastic
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ordering condition,
T+ +np < +---+ngforj=1,...,c— 1.

Robertson et al. (1988, p. 290) discussed projections that provide fitted values for this
alternative. Using an algorithm based on Fenchel duality, El Barmi and Dykstra (1995)
tested for this stochastic ordering against the unrestricted alternative. Agresti and Coull
(1998b) described alternative ways of performing tests of marginal homogeneity against
various order-restricted alternatives.

Other order-restricted approaches for square tables apply to departures from sym-
metry of cell probabilities, the strong condition by which n;; = m;; for all i and j. El
Barmi and Kochar (1994) tested symmetry against H,: m;; > m;, for i > j. Robertson
(1986) tested symmetry and a type of unimodality around the main diagonal against
alternatives where one of these does not hold. Goodman (1985) described a model that
specifies the odds m;;/m;; to be a monotone function in (i — j). One can obtain this
solution by fitting the log-linear model of diagonal asymmetry,

IOg(TCij) = /ﬂbjj + 5i—j[(i >])7 j‘ij = Aji

where [ is an indicator function, using the pool-adjacent-violators algorithm to con-
strain 0 < ) <--- < .. Since the model has concave log likelihood, when the
unconstrained estimates violate the constraint the ML solution occurs on the boundary
of the order-restricted parameter space. Alternatively, one could fit models that have
common values (Bhattacharya, 1998) or linear trends (Agresti, 1983) in such terms,
for instance log(m;;/m;;) = 6(i — j) for i > j.

Again, open questions concern whether LR tests with inequality constraints may, in
certain situations, provide anomalous results, and whether improved behavior results
from using broader null hypotheses. Also, in practice hypotheses of symmetry and
marginal homogeneity are usually not plausible, and it is of greater interest to model the
components of the multivariate response in terms of predictors while adjusting for the
dependence among repeated measurements. A challenging problem would be isotonic
model-building of each component of the multivariate response in terms of predictors,
perhaps adapting ideas from the literature on generalized estimating equations to obtain
reasonable marginal fits even when the joint association structure is misspecified.

6. Comparison and practical application of order-restricted methods

This final section discusses the need for research on comparing different approaches
for handling order restrictions and the need for literature and software to make
inequality-constrained methods more accessible to data analysts.

6.1. Order restriction: inequality constraints vs. linear trends
In this review, we have seen that it is straightforward to conduct statistical inference

using models that incorporate ordering using linear trends for a fixed set of scores;
however, it can be complex even for large samples to conduct such inference using
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models that express trends purely in terms of inequality constraints, whether the con-
straints apply to probabilities, odds ratios, or model parameters for levels of a factor.
Thus, a natural question to ask is whether it is worth the extra effort to conduct infer-
ence based on inequality constraints. For instance, if the inequality constraints (2) on
binomial probabilities truly holds but the simpler linear logit model (1) does not, is
there the potential of a substantive power gain by performing a test of independence
against the inequality-constrained alternative instead of the linear logit test? In terms of
estimation performance, when do the inequality-constrained estimates of the binomial
probabilities tend to be better than the linear logit estimates?

If the linear logit model (1) holds or nearly holds, it is natural to use inference
based on it. In practice, though, one would often expect the binomial parameters to
change monotonically without satisfying, even approximately, the linear logit model.
Yet, there may be no a priori reason to choose a particular alternative link or struc-
tural form for the relationship. Is the inequality-constrained inference superior as one
moves sufficiently far away from the linear logit model? One would expect so, but that
inference must counteract the parsimonious benefit the linear logit-based inference has
of focusing inference on a single parameter.

Questions of these types have not received much attention for categorical data analy-
ses. Poon (1980) and Collings et al. (1981) compared the performance of the one-sided
Armitage test for trend, the test of Barlow et al. (1972) based on the inverse sine
transformation of the proportions, and test statistics based on the isotonic regression
of the sample proportions under ordered alternatives, umbrella alternatives of the form
PL<p<---< p;>piy1 == pr, and a probit model linear in log dose. These
authors noted that the trend test and inverse sine test suffer appreciably under the
umbrella alternative with respect to power, and concluded that the isotonic tests are
preferable in this case. Agresti and Coull (1998a) performed some comparisons of mod-
els (1) and (2). For the moderate-sized values of » commonly encountered in practice
(say, around 4 or 5), they noted that if the true probabilities are strictly monotone
but deviate somewhat from the linear logit model, it is still better to use logit-based
probability estimates unless the sample size is quite large. There may be scope here to
develop monotone models that are smoother than the inequality-constrained methods.

6.2. The future of order-restricted methods for contingency tables

A substantial literature exists on order-restricted methods of inference, both for con-
tinuous and categorical responses. Generalized linear models that incorporate ordering
of response categories or factor levels with linear trends on some scale are popular
in practice. Despite the extensive literature on methods that require only an inequality
constraint rather than structural trends such as linearity, such methods seem to be rarely
used. They do not typically appear in applied statistics texts or in the major software
packages. There are undoubtedly a variety of reasons for this. First, the methods are
not simple to apply, requiring algorithms and/or nonstandard limiting distributions even
for simple problems such as the one-way layout with normal responses. This should
not be a major hurdle, however, in the modern computing age. Second, much of
the research literature is not easily readable by applied statisticians and other data
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analysts. There is a definite need for a book on inequality-constrained inference having
an applied orientation.

Surprisingly, procedures do not seem to be available in popular software packages for
even some basic problems such as testing equality of parameters from an exponential
family against a simply-ordered alternative. Easy availability of such software to users
would be an important first step in increasing the usage of such methods. For categorical
data problems, some specialized programs are available and others undoubtedly exist
of which we are unfamiliar. Agresti and Coull (1996) provided software for simulating
P-values of exact LR tests comparing several binomial parameters against the ordered
alternative and comparing two multinomial distributions against the stochastic ordering
alternative. Dardanoni and Forcina (1998) provided general MATLAB programs for
large-sample inequality constrained testing in X ¢ tables with S, L, and C alternatives.

Besides the reasons just cited, the lack of application may reflect the rather limited
development of inequality-constrained methods, which for the most part relate to fairly
elementary problems. For multinomial data, for instance, the major emphasis has been
on comparing two groups or inference about probabilities for a single multinomial
distribution. Moreover, most of this work has focused on hypothesis testing, for which
there may indeed usually be little benefit to using order-restricted methods. For instance,
a test based on a linear trend parameter in a model may perform adequately and
even have greater power than the inequality-constrained test unless reality departs quite
markedly from the model.

There seems to be considerable scope, on the other hand, for the further development
of inequality-constrained estimation and modeling with generalized linear models. For
instance, does the good performance of inequality-constrained estimates when a trend
in binomial proportions is monotone but irregular or with potential slight departures
from monotonicity extend to other generalized linear models? How can one reduce the
bias in the constrained ML estimates? How can one obtain isotonic regression fits that
are smoother than the jagged ones provided by ML? Is it straightforward to include
additional variables as stratification factors? How can one summarize effects in models
with inequality constraints on odds ratios? How can one select a model form and the
relevant predictors for that model? How can one judge whether a model with inequality
constraints fits better than one with even more restrictive inequality constraints or even
one with linear effects? Especially important, how can one construct confidence intervals
for relevant parameters in the context of such models? For examples of some recent
uses of order-restricted methods in estimation and modeling, see Disch (1981), Wolfe
et al. (1981), Schmoyer (1984), Agresti et al. (1987), Morris (1988), McDonald and
Diamond (1990), Piegorsch (1990), Wax and Gilula (1990), Bacchetti (1989), Gelfand
and Kuo (1991), Geyer (1991), Ritov and Gilula (1991), Silvapulle (1994), Eddy
et al. (1995), Paula and Sen (1995), Nandram et al. (1997), and Park (1998).

As computations become increasingly feasible with modern simulation methods,
the Bayesian approach to inference is becoming more popular, even for relatively
complex, hierarchical models. There seems to be considerable scope for developing
order-restricted methods in a Bayesian framework. When it is sensible to assume an
order restriction ff; < i, < --- < f, for a set of parameters, one way to ensure that
the posterior distribution recognizes this constraint is by specifying the prior in terms
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of parameters such as log(f; — f;—1). When sample estimates violate the order, ML
estimates commonly fall on the boundary of the constrained parameter space; an ap-
pealing aspect of posterior means in a Bayesian approach is that they often fall in
the interior of the parameter space. Fahrmeir and Klinger (1994), Agresti and Chuang
(1986), Gelfand et al. (1992), and McDonald and Prevost (1997) reviewed existing ap-
proaches to fitting parameter-constrained models, including Bayesian ones in the latter
three papers.

Finally, order-restricted methods could be extended to additional types of applied
problems. For instance, there has been little work on order-restricted methods for re-
peated measurement data, as opposed to independent samples. See Mukerjee (1988)
and Shin et al. (1996) for examples in the normal-theory context and George and
Kodell (1996) for an example in a multivariate binary response setting. In addition,
model-based inference for inequality-constrained parameters could be extended to more
complex models for multi-way tables. A variety of applications may benefit from such
analyses in a generalized linear mixed model or latent variable format. This poses a
tremendous challenge, as log-likelihoods can be poorly behaved and it can be diffi-
cult to construct proper inferences even in ordinary mixed models without constraints.
See Hoijtink and Molenaar (1997) for an inequality constrained analysis with item
response models. For an even greater challenge, such methods could be extended to
generalized additive models (Hastie and Tibshirani, 1990). For instance, one might
want to predict a binomial probability as an unspecified smooth function of a dose
level for each of two groups, under the constraint that one response curve always falls
above the other. For all such models, the development of influence diagnostics would
be useful; see Paula (1993) for some work in this direction for generalized linear
models.

In summary, the surface seems to have been barely scratched in developing prac-
tically useful methods with inequality constraints for contingency tables. Many chal-
lenges remain, but the usefulness of such methods for the applied statistician is also
in doubt. In our opinion, much of the future work should be devoted to (1) evaluat-
ing theoretical properties of LR inference and alternatives with reference to when the
methods may have inappropriate behavior, (2) investigating issues of interval estima-
tion and model selection and building, (3) evaluating when it is worth the effort to
use such methods instead of simpler models with linear trends, (4) preparing survey
articles or monographs showing data analysts how to use the methods, and (5) prepar-
ing user-friendly software for conducting the methods. This work should keep those
interested in researching such methods busy well into the new millenium.
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