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This article reviews methods for constructing confidence
intervals for analyzing categorical data. A considerable
literature indicates that the method of inverting score
tests performs well for a variety of cases. When the sam-
ple size is small or the parameter is near the parameter
space boundary, this method usually performs much bet-
ter than inverting Wald tests and sometimes better than
inverting likelihood-ratio tests. For small samples, exact
methods are also available. Although these methods can
be quite conservative, inverting a score test using the
mid P-value provides a sensible compromise that uses
the small-sample distribution while reducing the conser-
vatism and only slightly sacrificing the lower bound for
the desired confidence level. For some models, score-
test-based inferences are impractical, such as when the
likelihood function is not an explicit function of the
model parameters. For such cases, pseudo-score infer-
ence can be based on a Pearson-type chi-squared statistic
that compares fitted values for a working model with
fitted values when the parameter of interest takes a fixed
value. For some simple cases involving proportions and
their differences, a different pseudo-score approach that
adds artificial observations before forming Wald confi-
dence intervals provides a simple way of approximating
score confidence intervals.
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1. Introduction

Confidence intervals for a parameter can be con-
structed by inverting significance tests about the value
of that parameter. The usual approach is based on in-
verting one of three large-sample chi-squared tests—the
likelihood-ratio test proposed by Sam Wilks (1938), the
Wald test proposed by Abraham Wald (1943), or the
score test proposed by C. R. Rao (1948).

For inversion of the Wald test, the 95% confidence
interval has the generic form, estimate ± 1.96 estimated
standard errors. Historically, Wald test-based inference
was the standard approach in the early development of
methods for categorical data analysis, because of its com-
putational simplicity. A good example is the article by
Grizzle, Starmer, and Koch (1969) applying weighted
least squares methods to analyze categorical data, and
many follow-up articles by Gary Koch and his colleagues
and students that considered various types of applications
(such as repeated measures analyses, in the influential
article by Koch et al. 1977). The Wald method is still
the most commonly used method, because of its ease of
use with statistical software that outputs parameter esti-
mates and standard errors. Increasingly used also in the
present era is the inversion of the likelihood-ratio test,
which compares the maximized log-likelihood function
under null and alternative hypotheses for the possible null
parameter values to generate the profile likelihood confi-
dence interval. Less commonly used is the inversion of
the score test, which is based on the derivative of the log-
likelihood function at the null hypothesis.
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For a generic parameter β , consider a confidence in-
terval (CI) based on inverting a two-sided significance
test of H0: β = β0 for the set of possible values β0. The
100(1− α)% CI is the set of β0 values for which the
test has P-value > α . For a log-likelihood function L(β )
(using a single parameter here for notational simplicity),
denote the maximum likelihood (ML) estimate by β̂ , the
score function by u(β ) = ∂L(β )/∂β , and the informa-
tion by ι(β ) =−E[∂ 2L(β )/∂β 2]. The Wald test uses

[(β̂ −β0)/SE]2 = (β̂ −β0)2ι(β̂ ),

where ι(β̂ ) denotes ι(β ) evaluated at β̂ . The 95% Wald
CI for β is β̂ ± 1.96(SE). The likelihood-ratio (LR) test
statistic is

−2[L(β0)−L(β̂ )].

The score test statistic is

[u(β0)]2

ι(β0)
=

[∂L(β )/∂β0]2

−E[∂ 2L(β )/∂β 2
0 ]
,

where the partial derivatives are evaluated at β0. The
three chi-squared tests are asymptotically equivalent un-
der H0 (Cox and Hinkley 1974). The Wald method, un-
like the other two methods, has the disadvantage that it
depends on the scale of measurement. For example, a
Wald CI for eβ does not consist of the exponentiated val-
ues of the Wald CI for β . Thus, in using the Wald method,
a sensible choice of scale is imperative, such as using the
log scale for the odds ratio and relative risk.

Section 2 summarizes research that has found that
for parameters in some basic categorical data analyses,
inverting the score test is an effective, well-performing
method. Even for small samples, the large-sample score-
test-based interval often performs surprisingly well. By
good performance, we mean that actual error probabili-
ties (i.e., the size of the test and the confidence level of
the CI) are usually close to their nominal levels. [More
detailed evaluations can compare other criteria as well,
such as length and types of bias; e.g., see Vos and Hud-
son (2005).] Section 3 discusses how a slightly adjusted
method based on inverting small-sample score tests us-
ing the mid P-value also performs well. Score confidence
intervals are sometimes difficult to construct, however,
such as when the likelihood function is not an explicit
function of the model parameters. For interval estimation
of a parameter in a multinomial model, Agresti and Ryu
(2010) proposed a “pseudo-score” method that inverts a
test using a modified Pearson statistic comparing the fit-
ted values for the model to the fitted values assuming a
particular value of that parameter. Section 4 introduces
this method and Section 5 outlines generalizations and
potential related research.

Although the Wald-test-based confidence interval is
simple and is commonly taught in introductory statistics

courses and used in practice, it often performs poorly
when the sample size is small or the parameter is near
the boundary of the parameter space. A type of applica-
tion in which this poor behavior is often relevant is meta-
analysis using information from many studies or centers
in comparing two treatments on a binary response, when
some studies have no or very few outcomes of a particu-
lar type but results are combined using weights based on
estimated variances. Section 6 summarizes simple adjust-
ments of Wald intervals for proportions and their differ-
ences such that the intervals resemble and perform simi-
larly to score intervals.

2. Score-Test-Based Confidence Intervals

For generalized linear models with the canonical link
function, such as binomial logistic regression models and
Poisson loglinear models, the score test statistic for a pa-
rameter can be expressed as a standardization of its suffi-
cient statistic. For subject i, letting yi denote the response
outcome and xi j denote the value of the explanatory vari-
able j for which β j is the coefficient, the sufficient statis-
tic for β j has the simple form ∑i xi jyi. Many popular tests
in categorical data analysis can be derived as score tests
that a parameter or a set of parameters equal 0. Examples
are the Pearson chi-squared test of independence in two-
way contingency tables, the McNemar test for compar-
ing proportions with binary matched pairs, the Cochran–
Mantel–Haenszel test of conditional independence for
stratified 2×2 tables, and the Cochran–Armitage trend
test for several ordered binomial samples. Methods that
construct their estimates of variability under a null hy-
pothesis condition are often score tests or are closely re-
lated to score tests.

Although score tests are well established for practi-
cal applications, score CIs are much less well known and
used. The only score CI that seems to receive consider-
able use is Wilson’s (1927) CI for a binomial parameter
π . It can be expressed as an inversion of the asymptotic
standard normal test using test statistic

z =
π̂−π0√

π0(1−π0)/n
,

for which the endpoints are roots of a quadratic equation.
Score CIs are less well known for other cases, even for
basic parameters for 2×2 contingency tables {ni j}.

Three particularly important parameters for 2×2 ta-
bles are the difference of proportions, the odds ratio, and
the relative risk. For the difference of proportions π1−π2
for two independent binomial samples, Mee (1984) and
Miettinen and Nurminen (1985) showed that the score CI
inverts the test of H0: π1−π2 = β0 using test statistic that
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is the square of

z =
(π̂1− π̂2)−β0√

[π̂1(β0)(1− π̂1(β0))/n1] + [π̂2(β0)(1− π̂2(β0))/n2]
,

where π̂1 and π̂2 are the sample proportions (i.e., unre-
stricted ML estimates) and π̂1(β0) and π̂2(β0) are the ML
estimates subject to the constraint π1−π2 = β0. (When
β0 = 0, z2 is the Pearson chi-squared statistic for testing
independence, applied to a 2×2 table.) For a fixed β0 the
restricted ML estimates have closed form, but the set of
such β0 having sufficiently small |z| to fall in the CI must
be determined iteratively. For interval estimation of an
odds ratio, for a given β0 let {µ̂i j(β0)} be the unique val-
ues that have the same row and column margins as {ni j}
and satisfy

µ̂11(β0)µ̂22(β0)

µ̂12(β0)µ̂21(β0)
= β0.

Let χ2
1,a denote the 100(1−a) percentile of a chi-squared

distribution with d f = 1. The set of β0 satisfying

X2 = ∑(ni j− µ̂i j(β0))2/µ̂i j(β0)≤ χ2
1,a

form a 100(1−a)% conditional score CI for the odds ra-
tio (Cornfield 1956). Likewise, score CIs exist for the rel-
ative risk (Koopman 1984), the difference of proportions
with matched samples (Tango 1998), logistic regression
parameters, and generic measures of association (Lang
2008).

More generally, let {ni} denote multinomial cell
counts for a contingency table of arbitrary dimensions.
Let {µ̂i} be the ML fitted values for a particular model.
For testing goodness of fit, the score test statistic is the
Pearson statistic,

X2 = ∑
(ni− µ̂i)

2

µ̂i
.

This fact was observed for multinomial models by Cox
and Hinkley (1974, p. 326) and then extended to a corre-
sponding statistic for generalized linear models by Smyth
(2003). When the model corresponds to taking the satu-
rated model and imposing a particular constraint for a
parameter β , then inverting the Pearson chi-squared test
of H0: β = β0 yields the score CI.

For parameters in categorical data analysis, the liter-
ature so far indicates that large-sample two-sided score
tests and corresponding confidence intervals perform
well, often much better than Wald inference. Even with
small samples for which asymptotics would be expected
to fail, this method performs surprisingly well for sim-
ple contingency table parameters and often outperforms
likelihood-ratio-test-based inference. This may reflect
the fact that for canonical models, the score statistic (a)

is a standardization of a sufficient statistic that is a lin-
ear combination of the observations and (b) uses a null
rather than estimated non-null standard error. For de-
tails and evidence such as simulation studies, see Koehler
and Larntz (1980) for testing independence in two-way
contingency tables; Newcombe (1998a) and Agresti and
Coull (1998) for CIs for binomial proportions; Miettinen
and Nurminen (1985), Newcombe (1998b), and Agresti
and Min (2005a) for CIs for the difference of propor-
tions and relative risk; Tango (1998) and Agresti and Min
(2005b) for inference about the difference of proportions
for dependent samples; Miettinen and Nurminen (1985)
and Agresti and Min (2005a) for CIs for the odds ratio;
Agresti and Klingenberg (2005) for multivariate compar-
isons of proportions; Agresti et al. (2008) for simulta-
neous CIs comparing several binomial proportions; and
Ryu and Agresti (2008) for effect measures comparing
two groups on an ordinal scale.

In practice, Wald CIs and likelihood-ratio-test-based
profile likelihood CIs are easily accessible with statistical
software. For example, profile likelihood CIs are avail-
able with PROC GENMOD in SAS (with the LRCI op-
tion) and in R by applying the confint() function to an
object corresponding to a generalized linear model fit. By
contrast, score CIs are not as well known as they deserve
to be, given how well they perform, and they have rela-
tively little availability in the primary statistical software
packages, even for simple settings such as 2×2 tables.

3. Small-Sample Score Confidence Intervals

Using the score (or other) test statistic, it is possi-
ble to apply small-sample distributions, rather than their
large-sample normal and chi-squared approximations, to
obtain P-values and CIs. To illustrate, consider inference
for a parameter of a logistic regression model. For sub-
ject i with binary outcome yi and values for k explanatory
variables xi0 = 1,xi1,xi2, . . . ,xik, the model is

logit[P(yi = 1)] = β0 + β1xi1 + · · ·+ βkxik.

The score statistic for β j is based on Tj = ∑i yixi j.
Starting with the binomial likelihood, one can base a
test on the conditional distribution of Tj after eliminat-
ing the other parameters by conditioning on their suffi-
cient statistics. For example, with the equal-tail method,
bounds (β1L,β1U ) of a 100(1−a)% CI for β1 satisfy

P(T1 ≥ t1,obs|t0, t2, . . . , tk;β1L) = a/2,

P(T1 ≤ t1,obs|t0, t2, . . . , tk;β1U ) = a/2.

See Mehta and Patel (1995) for details. Software is avail-
able for doing this, such as LogXact (Cytel Software
2005).
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Because of discreteness, it is not possible for a sig-
nificance test to have a fixed size such as a = 0.05 at all
possible null values for a parameter. In rejecting the null
hypothesis whenever the P-value ≤ a, the actual size has
a as an upper bound. Hence, actual confidence levels for
small-sample interval estimation inverting such tests do
not exactly equal the nominal values, and the inferences
are conservative. Inverting a test with actual size ≤ a for
all β0 guarantees that the CI has actual coverage probabil-
ity ≥ (1−a). In practice, the actual coverage probability
varies for different β values and is unknown.

When the conservatism is problematic, there are
ways of alleviating it (Agresti 2003). One way, which
also results in a narrower interval, is to invert a single
two-sided test instead of two equal-tail one-sided tests.
Another approach that is feasible when the parameter
space is small (such as for 2×2 tables) uses an uncon-
ditional approach to eliminate nuisance parameters, be-
cause the conditional approach exacerbates the discrete-
ness. For H0: β = β0 with nuisance parameter ψ , let
p(β0;ψ) be the P-value for a given value of ψ . The un-
conditional P-value is supψ p(β0;ψ) and the 100(1−a)%
CI consists of β0 for which supψ p(β0;ψ) > a. Agresti
and Min (2002) found that this approach works well
for the odds ratio, using a two-sided score statistic as
the criterion. Agresti and Min (2001) inverted two-sided
score tests for the difference and ratio of proportions, and
this method is available in the StatXact software (Cytel
2005). Coe and Tamhane (1993) proposed an alterna-
tive unconditional approach for the difference and ratio
of proportions that is more complex but performs well.
Santner et al. (2007) reviewed several such methods.

For single-parameter problems and for the condi-
tional approach that eliminates nuisance parameters, the
discreteness and consequent conservatism can be elim-
inated completely by using a randomized type of infer-
ence. With a discrete test statistic T such as a score statis-
tic, let U be a uniform(0,1) random variable. For testing
H0 : β = β0 against Ha : β > β0 using T , the randomized
test has P-value

Pβ0
(T > tobs)+U ×Pβ0

(T = tobs).

This has a uniform(0,1) null distribution, which is always
the case for ordinary P-values with test statistics having a
continuous distribution. A CI with actual coverage prob-
ability exactly equal to (1−a) has endpoints (βL,βU ) sat-
isfying

PβU
(T < tobs)+U ×PβU

(T = tobs) = a/2

PβL
(T > tobs)+(1−U)×PβL

(T = tobs) = a/2.

Stevens (1950) suggested this approach for the binomial
parameter. Although in this modern era it is viewed as

unacceptable to use a method for which the results de-
pend on a random number, it is a historical curiosity that
Stevens and other statisticians apparently believed that
this approach would be adopted for applied work. For ex-
ample, Pearson (1950) argued that statisticians may well
come to accept randomization after performing an ex-
periment just as they had come to accept Fisher’s ideas
about randomization before performing the experiment.
Stevens (1950) argued that an advantage of eliminat-
ing the uncertainty about the actual coverage probability
is that a narrower CI results than with standard small-
sample methods.

These days, randomized inference of this type is not
used. However, some authors advocate a fuzzy inference
approach that portrays graphically all such possible ran-
domized CIs (Geyer and Meeden 2005). We find that
approach useful for motivating an alternative method
based on inverting tests using the mid P-value (Lancaster
1961). For Ha : β > β0, the mid P-value is

Pβ0
(T > tobs)+(1/2)Pβ0

(T = tobs).

Unlike the randomized P-value, it depends only on the
data. Under H0, the ordinary P-value is stochastically
larger than uniform in distribution, but the mid P-value
is not and has E(mid P-value) = 1/2. The sum of right-
tail and left-tail P-values equals 1 + Pβ0

(T = tobs) for the
ordinary P-value but equals 1 for the mid P-value. Us-
ing the small-sample distribution, a 100(1− a)% CI for
β based on the mid P-value is determined by

PβU
(T < tobs)+(1/2)×PβU

(T = tobs) = a/2,

PβL
(T > tobs)+(1/2)×PβL

(T = tobs) = a/2.

Although the coverage probability of this interval is not
guaranteed to be ≥ (1−a), in practice it is usually close
to that value. Numerical evaluations suggest that it tends
to be a bit conservative in an average sense.

To illustrate, suppose T is a binomial random vari-
able. Using this construction with binomial probabilities
and (1/2) replaced by 1.0 yields the standard Clopper
and Pearson (1934) exact (conservative) CI. Considering
this method and the mid P-based CI over all the pos-
sible parameter values between 0 and 1, Figure 1 from
Agresti and Gottard (2007) shows the quartiles of nom-
inal 95% coverage probabilities as a function of n. The
median coverage probability (represented in each case
by the middle of the three curves) is much closer to the
nominal level for the mid-P-based CI. It would be useful
if statistical software could provide mid-P-based small-
sample CIs for cases with a single parameter, such as the
binomial and Poisson parameters, and for cases in which
nuisance parameters are eliminated, such as odds ratios
and logistic regression parameters.
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Figure 1. Quartiles of coverage probabilities for Clopper–Pearson (—) and mid-P (- - -) small-sample confidence intervals for binomial parameter,
from Agresti and Gottard (2007). For example, at a particular n, Clopper-Pearson coverage probabilities fall above top curve for 25% of π values
in (0, 1).

4. Pseudo-Score Inference Using the
Pearson Chi-Squared Statistic

Although the method of inverting score tests to obtain
CIs works well for parameters in simple models, it is of-
ten difficult or even infeasible to implement. A prime ex-
ample is the set of models for which the likelihood func-
tion is not an explicit function of the model parameters.

To illustrate, consider Table 1 showing data from
Kenward and Jones (1991) on results from a crossover
study designed to compare two dosages of a treatment
for relief of severe uterine pain during a woman’s men-
strual cycle. (The study also used a placebo treatment,
not shown here.) To detect whether responses tend to be
more positive for one dose than the other, we could com-
pare the marginal distributions using the cumulative logit
marginal model for the responses (y1,y2),

logit[P(y1 ≤ j)] = α j,

logit[P(y2 ≤ j)] = α j + β , j = 1,2.

The multinomial log-likelihood function, in terms of cell
probabilities {πi j} and cell counts {ni j}, is

L(πππ)∝ log[πn11
11 πn12

12 . . .πn33
33 ],

but the model parameters refer to marginal probabili-
ties so cannot be substituted into the likelihood function.
Other models for this table for which the score method

would be difficult to implement are the random effects
analog of this marginal model, the association model that
specifies a common value for the four global odds ratios,
and a model by which the mean for one response changes
linearly across categories of the other response, for a par-
ticular choice of category scores.

For a multinomial model for cell counts {ni} with
ML fitted values {µ̂i}, let {µ̂i0} denote fitted values for
a simpler “null” model (e.g., with a certain parameter
β = β0). For testing the simpler model against the full
model, the LR statistic is

G2 = 2∑
i

µ̂i log(µ̂i/µ̂i0).

The profile likelihood 100(1−a)% CI for β is

{β0} such that G2 ≤ χ2
1,a.

Agresti and Ryu (2010) proposed a method that par-
allels this one, but using the Pearson statistic, with the
purpose of making score-type CIs available when the
score CI itself is not easily obtainable. Rao (1961) sug-
gested the Pearson-type statistic for comparing models,

X2 = ∑
i

(µ̂i− µ̂i0)2

µ̂i0
.

This is a quadratic approximation for G2. From a Taylor
series expansion, X2 has the same limiting null distribu-
tion as G2 even under sparse asymptotics in which the
number of cells in the contingency table grows with the
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Table 1. Contingency table used to illustrate pseudo-score inference

y2 = High Dose

y1 = Low Dose No relief Moderate relief Complete relief Total

No relief 9 7 9 25

Moderate relief 4 16 11 31

Complete relief 4 10 16 30

Total 17 33 36 86

sample size, as is the case when at least one explanatory
variable is continuous (Haberman 1977). For general cat-
egorical data modeling, the alternative 100(1− a)% CI
for β is

{β0} such that X2 ≤ χ2
1,a.

When the full model is saturated, this method yields the
score CI. When the model is unsaturated, X2 is not the
score test statistic. The test using X2 to compare models
in that case is a pseudo-score test and the CI is a pseudo-
score confidence interval.

As an aside, we mention that in the case of the canon-
ical link function for a generalized linear model, Lovison
(2005) gave a formula for the score statistic that resem-
bles the Pearson statistic, being a quadratic form compar-
ing fitted values for the two models. Let X be the model
matrix for the full model and let V̂0 be the diagonal ma-
trix of estimated variances under the null model, with fit-
ted values µ̂µµ for the full model and µ̂µµ0 for the reduced
model. Then, the score statistic is

(µ̂µµ− µ̂µµ0)′X(X′V̂0X)−1X′(µ̂µµ− µ̂µµ0).

Lang, McDonald, and Smith (1999) gave this formula
for the log-linear case. Moreover, for the canonical-link
case, Lovison showed that the score statistic bounds be-
low the Pearson statistic comparing the models and is a
first-order approximation for it. For such cases, which in-
clude binomial logistic regression and Poisson loglinear
models, it follows that asymptotic P-values for the or-
dinary score test are at least as large as those for the
pseudo-score test, and CIs based on inverting the score
test contain CIs based on inverting the pseudo-score test.
However, we stated this is an “aside” because the pseudo-
score method is intended for more complex, noncanoni-
cal link cases, in which the score statistic is often not
available.

For Table 1, the ML estimate of β for the marginal
cumulative logit model is β̂ =−0.389, with SE = 0.251.
The model fits well, with a Pearson goodness-of-fit statis-
tic value of 0.45 (d f = 1). One can fit the marginal model
for various fixed β0 (taking that value times the margin
indicator as an offset) by using the R function mph.fit
available from Joseph Lang at the University of Iowa.

The 95% pseudo-score CI for β is (−0.891,0.110). Here,
results are similar to those for the profile likelihood CI of
(−0.891,0.104).

Pseudo-score methods are useful for three reasons:
First, for models that are not generalized linear models
with canonical link, ordinary score methods often are
not practical but the pseudo-score methods can be imple-
mented with the same level of difficulty as profile like-
lihood confidence intervals. Second, as the next section
discusses, extensions apply to settings in which profile
likelihood methods are not available. Third, as Section
2 mentioned, research has shown that ordinary score in-
ferences (when available) perform well in terms of hav-
ing actual coverage probability near the nominal level for
a variety of measures for discrete data. Through simula-
tions, Agresti and Ryu (2010) found that the pseudo score
method has similar behavior, performing similarly to the
profile likelihood interval and sometimes even a bit better
when sample sizes are small.

5. Generalizations of Pseudo-Score
Inference

Agresti and Ryu (2010) also proposed generaliza-
tions of pseudo-score inference. We briefly mention two
such generalizations here, the second of which has po-
tential for future research.

First, the method generalizes to discrete distributions
other than the multinomial and to sampling schemes
more complex than simple multinomial sampling. Sup-
pose {yi, i = 1, . . . ,n} are independent observations as-
sumed to have a specified discrete distribution. A
Pearson-type statistic for comparing models has the form

X2 = ∑
i

(µ̂i− µ̂i0)2

v(µ̂i0)
= (µ̂µµ− µ̂µµ0)′V̂−1

0 (µ̂µµ− µ̂µµ0),

where v(µ̂i0) denotes the estimated variance of yi assum-
ing the null distribution for yi and V̂0 is the diagonal ma-
trix containing such values (Lovison 2005). The pseudo-
score methods for multinomial responses extend to pa-
rameters of models for discrete data using this general-
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ized statistic, such as parameters of Poisson regression
models.

Many data are obtained with a complex sampling
scheme. For example, most surveys do not use simple
random sampling but instead a multi-stage sample that
employs stratification and clustering. One can then re-
place V̂0 by an appropriately inflated or nondiagonal esti-
mated covariance matrix. Suppose, for example, that the
sampling variances of estimates are approximately 50%
larger than obtained with simple random sampling (as is
the case according to the codebook of the General Social
Survey). We can then obtain more relevant confidence in-
tervals from the set of β0 with ∑i(µ̂i− µ̂i0)2/(1.50µ̂i0)≤
χ2

1,a. For such complex sampling designs, profile likeli-
hood confidence intervals are not available and need to
be replaced by quasi-likelihood adaptations.

Second, the pseudo-score inference presented above
may extend to other types of quasi-likelihood analyses.
A possible application is marginal modeling of clustered
categorical responses. A popular approach for marginal
modeling uses the method of generalized estimating
equations (GEE). Because of the lack of a likelihood
function with this method, Wald methods are commonly
employed, together with a sandwich estimator of the co-
variance matrix of model parameter estimates. For bi-
nary data, let yit denote observation t in cluster i, for
t = 1, . . . ,Ti and i = 1, . . . ,n. Let yi = (yi1, . . . ,yiTi)

′ and
let µµµ i = E(yi) = (µi1, . . . ,µiTi)

′. Let Vi denote the Ti×Ti

covariance matrix of yi. For a particular marginal model,
let µ̂µµ i denote an estimate of µµµ i, such as the ML estimate
under the naive assumption that the ∑i Ti observations as
independent. Let µ̂µµ i0 denote the corresponding estimate
under the constraint that a particular parameter β takes
value β0. Let V̂i0 denote an estimate of the covariance
matrix of yi under this null model. The main diagonal
elements of V̂i0 are µ̂it0(1− µ̂it0), t = 1, . . . ,Ti. Separate
estimation is needed for the null covariances, which are
not part of the marginal model.

Now, consider

X2 = ∑
i

(µ̂µµ i− µ̂µµ i0)′V̂−1
i0 (µ̂µµ i− µ̂µµ i0).

With categorical explanatory variables, X2 applies to two
sets of fitted marginal proportions for the contingency ta-
ble obtained by cross-classifying the multivariate binary
response with the various combinations of explanatory
variable values. The set of β0 values for which X2 ≤ χ2

1,a
is a CI for β . Unlike the GEE approach, this method does
not require using the sandwich estimator, which can be
unreliable unless the number of clusters is quite large
(Firth 1993; Kauermann and Carroll 2001). Even with
consistent estimation of Vi0, however, the limiting null
distribution of X2 need not be exactly chi-squared be-
cause the fitted values result from inefficient estimates.

However, based on preliminary simulations, it seems
that the chi-squared distribution often provides a good
approximation. Boos (1992) and Rotnitzky and Jewell
(1990) presented score-type tests for the clustered-data
setting.

6. Pseudo-Score CIs That Adjust Wald CIs

Of the three types of tests inverted to construct CIs,
the Wald test tends to have the poorest performance. This
is unfortunate, as it is the informal way that most method-
ologists inspecting software output will form a CI. The
Wald method is usually fine for producing “rough-and-
ready” results, especially when n is large, but for many
purposes it is better to use safer methods such as score
and profile likelihod CIs. However, for the simple prob-
lem of estimating a binomial parameter or comparing two
such parameters, simple rough-and-ready adjustments of
Wald CIs approximate score CIs and have similar good
performance, even with small samples.

Suppose y has a binomial distribution with parame-
ter π , and let π̂ = y/n. Agresti and Coull (1998) noted
that in the 95% case, finding all π0 such that |π̂ −
π0|/

√
π0(1−π0)/n < 2 provides the score CI of form

M±2s with

M =

(
n

n + 4

)

π̂ +

(
4

n + 4

)
1
2

=
y + 2
n + 4

,

and

s2 =
1

n + 4

[

π̂(1− π̂)

(
n

n + 4

)

+
1
2

1
2

(
4

n + 4

)]

.

They used this to motivate the 95% CI, now referred to
in some elementary texts as the plus four CI,

π̃±1.96
√

π̃(1− π̃)/ñ

with π̃ = (y+2)(n+4) and ñ = n+4. This has the same
midpoint as the 95% score CI, when we round the nor-
mal percentile 1.96 to 2. It is slightly wider by Jensen’s
inequality, because the variance is found at the weighted
average of π̂ and 1/2 instead of using a weighted average
of variances.

In fact, this adjustment of the Wald CI has much bet-
ter performance than the ordinary Wald CI, and when π
is close to 0 or 1 it also performs better than the ordi-
nary score CI. Figure 2, from Agresti and Caffo (2000),
shows the coverage probabilities of the ordinary and ad-
justed Wald methods, for various sample sizes and for
95% and 99% CIs. For estimating the difference between
two proportions with independent samples, Agresti and
Caffo (2000) showed that constructing the Wald CI after
adding 4 outcomes, one “success” (S) and one “failure”
(F) to each sample, also yields a much better CI. Agresti
and Min (2005) showed a similar result for comparing
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Figure 2. Coverage probabilities for Wald (· · · ) and adjusted Wald pseudo-score (—) confidence intervals for a binomial parameter, from Agresti
and Caffo (2000)

proportions with dependent samples, an improved CI re-
sulting from adding one S and one F to each sample such
that there is half an additional observation for each possi-
ble sequence {(S,S), (S,F), (F,S), (F,F)} for the matched
pairs.

Brown, Cai, and Das Gupta (2001) showed further
evidence of the poor performance of the Wald method.
For example, when a single proportion π = 0.01 or 0.99,
the value of n0 needed in order for the coverage probabil-
ity of a nominal 95% Wald CI to exceed 0.94 uniformly
in n ≥ n0 is about 8000, compared to 1 for the adjusted
CI. The poor performance of the Wald CI is due to cen-
tering at the point estimate when the parameter space is
bounded, not because the CI is too short. In fact, the Wald
CI has greater length than an adjusted CI unless the pa-
rameters are relatively near the boundary of the parame-
ter space.

The shrinkage form of the adjusted Wald CIs also
suggests that CIs resulting from the Bayesian approach
can also perform well in a frequentist sense. This was
shown with relatively diffuse prior distributions for a sin-
gle proportion by Brown et al. (2001) and for the dif-
ference of proportions, relative risk, and odds ratio by
Agresti and Min (2005a). These articles found that the
Bayesian probability interval from the a/2 to (1− a/2)

quantiles of the posterior distribution perform well in a
frequentist sense when the prior distributions for bino-
mial parameters are the Jeffreys prior, which is the U-
shaped beta distribution with parameters 0.5 and 0.5.

7. Summary

For basic categorical data analyses, inverting the
large-sample score test provides CIs having coverage
probabilities near the nominal level. For small-sample
distributions with a single parameter, inverting score tests
using the mid P-value also provides good CIs. Score CIs
should be added to the major statistical software pack-
ages, now being available mainly in specialized soft-
ware such as StatXact. Specially written functions for
the free software R are available for many such CIs at
www.stat.ufl.edu/∼aa/cda/software.html. The ordinary R
function prop.test provides it for a single binomial pa-
rameter, with the option CORRECT=FALSE to delete the
Yates continuity correction.

Ordinary score tests and CIs are often infeasible,
and Agresti and Ryu (2010) proposed a pseudo-score CI
for a multinomial model parameter based on inverting a
test using the Pearson statistic. This is a simple unified
method that performs well in a wide variety of settings
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and can be implemented with ordinary model-fitting soft-
ware.
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