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 A Model for Repeated Measurements of a
 Multivariate Binary Response

 Alan AGRESTI

 This article presents a logit model for a vector of binary variables observed for each subject under multiple conditions. The model
 contains a vector of random effects to account for correlations among the repeated measurements. A nonparametric treatment of the
 random effects implies a multivariate log-linear model having quasi-symmetric structure for the cross-classification of responses at
 the various conditions. The fit yields estimates of within-subject effects comparing the conditions for each variable. The estimates
 are identical to conditional maximum likelihood estimates for a fixed-effects version of the logit model. Extensions incorporate
 independent groups or allow variables to have multiple response categories.

 KEY WORDS: Item response model; Marginal homogeneity; Matched pair; McNemar test; Quasi-symmetry; Rasch model.

 1. INTRODUCTION

 When a study measures a binary variable for each subject
 under two conditions, inferential methods such as McNe-
 mar's test are well established for comparing the matched-
 pair responses. This article discusses a model that extends
 inference to a vector of categorical variables, with each ob-
 served under at least two conditions. The conditions refer to
 the separate situations under which measurements occur for
 a variable, such as distinct time points, different variations
 of a question in a survey, or different treatments. For in-
 stance, a crossover experiment in a biomedical study might
 measure several binary outcome measures under each of
 two or more treatments.

 Table 1, first presented by Coleman (1964), is a simple
 example of repeated categorical measurement data of this
 type. A study interviewed a sample of schoolboys twice,
 several months apart, and asked about their self-perceived
 membership in the "leading crowd" (yes, no) and about
 whether one must sometimes go against his principles to
 be part of that leading crowd (agree, disagree). The table
 summarizes responses on two variables (membership in the
 leading crowd, attitude toward the leading crowd) under
 two conditions (the two interview times). Each subject has
 measurements at two times for each of the two binary vari-
 ables.

 More generally, different variables may have different
 numbers of response categories. The different variables may
 even refer to different numbers of conditions. For simplic-
 ity of notation, I express models for the case of a common
 number of conditions for each variable.

 The model presented in this article provides comparisons
 of responses under the various conditions, simultaneously
 for each variable. The primary focus is on binary responses.
 I propose a logit model with a vector of random effects for
 each subject, to account for the correlation among the re-
 peated measurements. A nonparametric approach with the
 random effects implies a multivariate marginal model that
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 for each variable has quasi-symmetric log-linear structure
 for the cross-classification of responses among conditions.
 That model is simple to fit with standard software for log-
 linear models. In Table 1, for instance, the logit model de-
 scribes subject-specific changes in membership and changes
 in attitude between the two interview times. I provide fitted
 values for a related marginal model that contains the same
 parameter describing changes in membership, the same pa-
 rameter describing changes in attitude, and a parameter de-
 scribing the association between membership and attitude
 at each interview time.

 Section 2 introduces the multivariate logit model for the
 repeated responses. Section 3 discusses the log-linear model
 implied by a nonparametric random-effects treatment and
 illustrates the model by providing analyses for Table 1. Sec-
 tion 4 discusses special cases of the model and extensions
 to handle comparisons of response patterns for separate
 groups or to handle multiple-category responses. Finally,
 Section 5 explores connections with conditional maximum
 likelihood estimation for the logit model and raises ques-
 tions for further research.

 2. A MULTIVARIATE LOG IT MODEL FOR
 REPEATED MEASUREMENT

 Suppose that subjects respond to I separate binary vari-
 ables, each measured for T conditions. For a given subject,
 denote the response under condition t for variable i by Yit,
 with observed value Yit = 1 or 0, i = 1, ... .,I, t = 1, ... .,T.
 I refer to the outcome categories 1 and 0 as success and
 failure. For subject s, s = 1,. .., n, let /i1st denote the prob-
 ability of success on variable i under condition t. Different
 conditions for a variable use the same scale, and the ques-
 tions or instrument used to elicit the response are set up
 so that the successive responses on a variable are positively
 correlated.

 Consider the model

 logit(q$28t) = ali8 ? li3i: (1)

 i = 1,. .., I, t = 1,. .., T, which assumes a lack of subject-
 by-condition interaction for each variable. For each vani-
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 Table 1. Membership (M) and Attitude (A) Toward the "Leading Crowd" for Boys
 (Fitted Values for Multivariate Quasi-Symmetry Models in Parentheses)

 (M,A) for (M,A) for second interview
 first interview (Yes, Agree) (Yes, Disagree) (No, Agree) (No, Disagree) Total

 Yes Agree 458 140 110 49 757

 (458) (141.8) (119.5) (49.1)

 (453.4) (143.8) (121.7) (49.1)
 Yes Disagree 171 182 56 87 496

 (169.2) (182) (58.6) (74.8)
 (171.5) (182.8) (58.5) (72.8)

 No Agree 184 75 531 281 1,071
 (174.5) (71.7) (531) (282.3)

 (177.7) (71.6) (530.6) (280.4)

 No Disagree 85 97 338 554 1,074
 (85.6) (109.2) (336.7) (554)

 (85.5) (106.3) (334.5) (557.9)

 Total 898 494 1,035 971 3,398

 NOTE: Second set in parentheses constrain equal odds ratios between M and A for each interview.

 able, this model has the form of the Rasch model (Rasch
 1961) for responses under the various conditions. Given the

 model parameters, I treat the observations as independent

 Bernoulli variates. Identifiability requires a constraint such

 as /3iI = 0 for each variable. The {Oi1,... , /3iT} for each i
 are the parameters of interest for describing the condition
 effects for each variable. The {ais} parameters reflect the
 heterogeneity among subjects that induces the correlations

 among repeated responses on a variable.

 For subject s, the probability of a particular sequence of

 responses y = (Yii,.. ., YIT) for the IT variable-condition
 combinations equals

 e%s+Iit Ytt -It

 11 H1 + eats + ) Yt (1 ?eas?+3tt

 exp[Zi (is(t Yit) + Ei Et AtYit]

 fli Ilt[l + exp(ai, + 3it)]

 Denote the subject terms for subject s by cx =

 (as,,. . , aIs). I treat this vector as a random effect, per-
 mitting the components to be correlated. In Table 1, for in-

 stance, subjects having a relatively high random effect for
 the membership variable (thus having a propensity to be
 members regardless of the interview time) probably tend to

 have a relatively high random effect for the attitude vari-
 able.

 Thus, the analysis using model (1) treats ox, as a multi-
 variate random effect with correlated components. Suppose

 that ac,,.. ., a,, are independent with a cumulative distribu-
 tion function denoted by F. Denote the marginal probabil-
 ity, averaged over the subjects, of a particular sequence of
 responses y by 7r(y). The next section utilizes a log-linear
 model for these marginal probabilities implied by the logit

 model to estimate the condition effects {13it}.

 3. A MARGINAL MULTIVARIATE LOG-LINEAR MODEL

 For model (1), the marginal probability equals

 -r(y) = exp( E / 3itYit)
 \i t /

 f exp[i ais(Zt yit)] dF(als, ...., aj,).
 las Ilt J[I + exp(ati, + /it)]

 Regardless of the form of F, the integral determining this
 marginal probability yields a complex function of the {13it}.
 Note, however, that this function depends on the data only

 through the values of (Et Ylt, ... , Zt yit). Thus model (1)
 implies that this marginal probability has a structure that is
 a special case of a model providing a separate parameter
 for each possible value of that vector of sums. This more
 general marginal model has the form

 7r(y) = exp E E Oityit) / ( it it )
 where ^y is an unspecified positive parameter that can as-
 sume a different value for each combination of the argu-
 ments.

 Under the assumptions just made, the sample of n ob-
 servations on the binary responses y for the IT variable-
 condition combinations forms a multinomial sample with
 probabilities {7r(y)}. The form just derived that these prob-
 abilities satisfy can be expressed as a log-linear model for
 expected frequencies {,u(y)} in a 2IT contingency table that
 cross-classifies the responses for the IT variable-condition
 combinations. This model has the form

 log[/,(y)] = E E /ityit + A (E Yit, . E YItV
 i t t t

 (2)

 For this model, the interaction term is invariant under per-
 mutations of the response outcomes for the conditions for
 a particular variable.

 No matter what form the random effects distribution F

 takes, the implied marginal model has the same main effect
 structure, and it has an interaction term that is a special case
 of the one in (2). Thus one can consistently estimate the
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 within-subject condition effects for each variable in a non-

 parametric manner using the ordinary maximum likelihood

 (ML) estimates obtained by fitting the log-linear model. The

 estimates pertain to comparisons of the form /it1 - /it2 for
 each pair of conditions t1 and t2 for a variable. The inter-
 action parameters in models such as (2) reflect the depen-

 dence in responses within and between variables. However,

 summary interpretations for the model refer to the {pit}

 marginal parameters rather than to these interaction param-

 eters, the interpretations referring to odds ratios based on

 the original logit model (1).
 An obvious question is whether estimating the condition

 effects using log-linear model (2) results in some efficiency
 loss, due to replacing the actual form of those parameters

 in the interaction term by a more general interaction term. I

 believe that any efficiency loss is likely to be minor, because

 of the argument (presented in Sec. 5) showing that the ML
 estimates for log-linear model (2) are also the conditional

 ML estimates for logit model (1) based on eliminating the
 subject parameters by conditioning on their sufficient statis-

 tics. In univariate problems with item response models, I

 am unaware of any studies showing significant efficiency

 gains over the conditional ML estimate. In fact, in the uni-

 variate case it follows from de Leeuw and Verhelst (1986)
 and Tjur (1982) that the actual nonparametric estimate is
 asymptotically identical to this extended nonparametric es-

 timate based on the more general interaction term. Some

 efficiency loss may occur relative to the estimates for a

 particular parametric choice of random effects distribution,

 but those estimates have the disadvantage of potential in-

 consistency due to misspecification of that distribution.

 One can fit model (2) using the standard Newton-
 Raphson algorithm for log-linear models; for instance, with

 software for generalized linear models. (An example is
 available from the author for Table 1 using SAS or GLIM.)
 For identifiability, one sets a constraint on the main effect

 parameters for each variable, such as !iT = 0 for all i.
 The usual goodness-of-fit statistics have large-sample chi-

 squared distributions with df = 2IT [I(T - 1) + (T + 1)I].
 The data are often sparse, in which case such indices are

 mainly useful for comparing fits of models.

 The likelihood equations induced by the first term in the

 log-linear model equate the fitted values to the observed

 data in the marginal distribution for each variable-condition

 combination. These are the likelihood equations for the

 model of mutual independence of the IT responses. For any

 combination of integer values (ul, . ., u), 0 < ui < T for
 all i, let n* (u, ... , ui) denote the sum of all cell counts in
 the contingency table having Et Ylt = ul, , Et y=t = uj,
 and let A* (ul,..., u) denote the fitted total in these cells
 for a model. Then the interaction term in the model induces

 the likelihood equations A* (ul, . . ., uj) = n* (ui, . . ., u )
 for all such combinations; in the univariate case, this sec-
 ond set of likelihood equations are the ones for the complete
 symmetry model, for which each cell with the same number

 of successes has the same probability. Only one cell has a

 particular combination ....... u1) when vi = 0 or T for
 each i; that is, when for each variable all responses are suc-

 cesses or all responses are failures. In those cells the model
 provides a perfect fit.

 For Table 1, log-linear model (2) fits fairly well. The
 goodness-of-fit statistics are GI = 4.92 for the likelihood-
 ratio statistic and X2 = 4.95 for the Pearson statistic,
 based on df = 5. Table 1 also displays the fitted values

 for this model. The ML estimates of the condition effects

 are !A1 - !A2 = .176 (asymptotic standard error (ASE) =

 .058) for attitude and !M1 - !M2 = .379 (ASE = .075)
 for membership. These are interpreted using odds ratios.

 For instance, for each subject, the estimated odds of mem-
 bership in the leading crowd at the first interview equal

 exp(.379) = 1.46 times the estimated odds of membership
 at the second interview.

 To test the significance of these condition effects simul-

 taneously, we can test within-variable marginal homogene-
 ity for the two variables by comparing this model to the

 simpler model that forces the effects to be zero. The likeli-
 hood ratio statistic of 35.4 with df = 2 provides extremely

 strong evidence against the hypothesis that !A1 - !A2 =

 /M1 - /M2 = 0. Individual tests provide strong evidence of
 an effect for each variable, particularly of a decrease in the

 odds of membership in the leading crowd.

 Goodman (1974a,b) and Haber (1985) presented alterna-
 tive models for these data. Goodman used a latent class
 model with four latent classes that cross-classify two asso-

 ciated binary latent variables, one affecting the membership
 responses and one affecting the attitude responses. Common
 elements are shared by this latent class approach and mod-
 els containing a pair of correlated random effects, though
 parameter interpretations for our model apply directly to
 the observed variables rather than to relationships between

 the latent variables or between the latent variables and the

 observed variables.

 Haber (1985) fitted a model that assumes solely that the
 odds ratio between attitude and membership is identical

 for each interview. That is, the model applies to the 2 x 2
 marginal table of membership and attitude at the first in-
 terview and the 2 x 2 marginal table of membership and

 attitude at the second interview. The sample odds ratios in
 these tables are 1.53 and 1.71, and Haber's model yielded
 fitted odds ratios in each table of 1.62.

 The fit of model (2) also suggests that these marginal odds
 ratios are similar, as their estimates based on the fitted val-
 ues for that model equal 1.63 and 1.61. Using the methodol-
 ogy and the algorithm described by Lang and Agresti (1994)
 for simultaneous fitting of generalized log-linear models to
 joint and marginal distributions of contingency tables, we
 fitted the slightly simpler version of model (2) that con-
 strains these marginal odds ratios to be identical. The fit,
 also shown in Table 1, has G2 = 5.31 and X2 = 5.41 with df
 = 6. The fitted common odds ratio equals 1.62, and the esti-
 mated condition effects are !A1 - !A2 = .176 (ASE = .058)
 and !M1 -!3M2 = .378 (ASE = .075). In summary, this anal-
 ysis describes Table 1 using three parameters. One param-
 eter compares the attitude responses at the two interviews,

 estimated by an odds ratio of exp(.176) = 1.19; a second
 parameter compares the membership responses at the two
 interviews, estimated by an odds ratio of exp(.378) = 1.46;
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 and a third parameter describes the association between the

 attitude and membership responses at each interview, esti-
 mated by an odds ratio of 1.62.

 4. SPECIAL CASES AND EXTENSIONS

 For the single-variable case I = 1, model (2) is the quasi-
 symmetry model (Bishop, Fienberg, and Holland 1975;
 Caussinus 1966). Conaway (1989), Darroch (1981), Dar-
 roch, Fienberg, Glonek, and Junker (1993), Fienberg (1981),
 Kelderman (1984), Tjur (1982), and others have discussed
 connections between the logit and log-linear models in this

 case. For arbitrary I, the likelihood equations for the gen-
 eral log-linear model (2) imply that the fit in the 2T marginal
 table for variable i is identical to the fit of the ordinary
 quasi-symmetry model to that marginal table alone. I re-
 fer to the full model (2) as a multivariate quasi-symmetry
 model.

 In the multivariate matched-pairs case (arbitrary I, but
 T = 2), model (2) has fitted values in the 2 x 2 marginal
 table for each variable that are identical to the observed

 counts. The estimate of exp(Oi2 - Oil) then equals the
 number of cases with (Yil, Yi2) = (0,1) divided by the num-
 ber of cases with (Yil, Yi2) = (1,0). This is precisely the
 information used in the univariate case with methods such
 as McNemar's test (Cox 1958).

 For four special cases of logit model (1), nonparamet-
 ric marginal ML solutions relate to log-linear models that

 are special cases of model (2). First, suppose that the logit
 model has a degenerate random effects distribution; that

 is, the variance equals zero for each component. Then the
 marginal model is precisely the special case of (2) without
 the interaction term. This is the log-linear model of mu-
 tual independence among the responses for all the variable-
 condition combinations.

 Second, suppose that the components of os =
 (Oils, ... * a i.) are mutually independent. Then the marginal
 probability of a particular sequence of responses satisfies
 the log-linear model

 log[A(y)1 = E E !3'itYit + E Ai y(Yit) (3)
 i t i t I

 This model satisfies the restrictive, and typically unrealistic,

 structure whereby responses on variable a for any condition
 ta and on a different variable b for any condition tb are in-
 dependent, both marginally and also conditionally on other
 responses.

 Third, suppose that the components of a,, = (als *... *
 a1i) are perfectly positively correlated. Then the marginal
 probability of a particular sequence of responses satisfies
 the log-linear model

 log[A (y)] = ? E ZitZyit + A Yit)- (4) i t i t

 In this case the logit model (1) treats all the variable-
 condition combinations symmetrically. This model is identi-

 cal to the Rasch model applied to the IT separate responses.
 Similarly, the derived log-linear model is identical to the
 quasi-symmetry model for the 2IT contingency table that
 cross-classifies those responses.

 Finally, suppose that {/3oj} in the logit model (1) are
 identical. Then they are also identical in the log-linear
 model. Model (2) then exhibits within-variable symme-
 try. Specifically, each cell having the same value of

 (Et ylt, ... Et yit) has the same probability. The fitted
 value for each such cell is

 ft(y) = n*(y i+ y . .I+)J( YT)

 Each of these four simpler models is typically too sim-
 plistic to fit well. For instance, Table 2 also summarizes the

 fit of these models to Table 1. All of them fit poorly.
 It is straightforward to extend log-linear model (2) to

 incorporate a group factor or to handle multiple-category
 responses. I first extend the model to provide comparisons
 of G groups on their within-subject condition effects, us-
 ing independent samples of subjects from the groups. For

 subject s in group g, g = 1, ... ,G let Okis(g)t denote the
 probability of success. In general form, the logit model (1)
 extends to

 logit(Ois(g)t) = ais(g) + !itg* (5)

 The model maintains additivity of subject and condition ef-
 fects for each variable, but it permits the condition effects to

 vary among groups. Assuming that (al(g),... I a*s(g)) are
 iid among subjects in group g with unknown distribution,
 this structure implies a marginal model that satisfies

 log[Atg(y)] = E E oitgyit + Ag E Ylt,* v E Yit)
 i t t t

 g= 1,...,G. (6)

 Table 2. Summary of Log-Linear Model Fits to Table 1

 Model G2 X2 df A effect ASE M effect ASE

 a. Mutual independence 1,421.7 1,572.6 11 .125 .048 .172 .050
 b. 4-item quasi-symmetry 616.6 680.3 8 .159 .055 .224 .057
 c. Independent random effects 97.5 96.8 9 .176 .058 .379 .075
 d. Multivariate symmetry 40.3 40.0 7 0 0
 e. Multivariate quasi-symmetry 4.9 5.0 5 .176 .058 .379 .075
 f. Multivariate quasi-symmetry and common odds ratio 5.3 5.4 6 .176 .058 .378 .075

 NOTE: Models result from logit model (1) with (a) degenerate random effects, (b) perfectly correlated random effects, (c) independent random effects, (d) identical condition effects for each variable,

 (e) unspecified distribution of random effects, and (f) case (e) with identical odds ratio between variables at each time.
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 Fitting this general form of the model simultaneously for
 all g is equivalent to fitting model (2) separately for each
 group. Special cases in which condition effects are homoge-

 neous across groups for certain variables yield special cases

 of log-linear model (6) in which 3itl = ... = 3itG for all
 t for those variables. Such a model provides a decent fit to
 an expanded version of Table 1 that also contains data for

 schoolgirls from Coleman's (1964) study; the homogeneous
 attitude effect equals .126 (ASE = .043), and the homoge-
 neous membership effect equals .384 (ASE = .057).

 The results in this article also extend directly to more
 general models that permit some or all variables to have

 nominal or ordinal scales. Let 3ij(i))t denote the probability
 of response in category j(i) on variable i for subject s under

 condition t, for i = 1, I .., I,j(i) = 1, ... .I i, s = 1, ... n
 and t = 1, ... I T. For variable i and condition t for a given
 subject, let Yij(i)t = 1 if the response falls in category j(i)
 and 0 otherwise. A general extension of model (1) is given
 by

 ~ij (i) s - exp(aij(i)8 + !3ij(i)t) (7)
 Zt = j(i) exp(acij(i)s + !ij'(i)t)

 where the parameters equal zero for a baseline response
 category (e.g., j(i) = 1) and a baseline condition for each
 variable.

 For a nonparametric treatment of the random-effects dis-

 tribution, the marginal probability of a particular sequence
 of responses on the variables and conditions is again a spe-
 cial case of a multivariate quasi-symmetric type of log-
 linear model. For a particular sequence y and expected fre-
 quencies {,u(y) }, the log-linear model has form

 log[A(y)] = E E E ij(i)tYij(i)t
 i t j(i)

 + A ( Yllt, ... E: Y1,Jl-l,tl ... IE: Yi,,J-,t) (8)
 t t t

 for the Ili JT contingency table. The interaction term does
 not require elements for the final category of each variable,
 which would be redundant. For the single-variable case, this
 is the ordinary quasi-symmetry model (see, e.g., Conaway
 1989).

 When a particular variable i is ordinal, a simpler model
 is often adequate, replacing the parameters {/ij(i)t,i(i) =

 1, ... Ji} in the logit model (7) by {vj(i)/3it,j(i) =
 1,... Ji} for a set of fixed monotone scores {Vj(i)}. A
 nonparametric random effects approach with this ordinal
 structure relates to a log-linear model in which the main

 effect terms Et Ej(i) /ij(i)tYij(i)t for variable i in model
 (8) are replaced by Et Zj(i) /ity (i)t, where y* = Vj(i)
 if the response falls in category j(i) and equals 0 otherwise.

 For a given variable i, the parameters {!Oil, , /IriT } for the
 different conditions provide a stochastic ordering of the re-

 sponse distributions. The sufficient statistics for those pa-

 rameters are sample mean scores for the various conditions,

 and the ML estimates of {/3it} have the same ordering as

 those means. For the single-variable case, I have discussed

 this ordinal type of quasi-symmetry model in earlier work

 (Agresti 1993a, 1993b).

 5. COMMENTS AND CONCLUSIONS

 This article applied a nonparametric random-effects ap-

 proach to the subject term in logit model (1). A fixed-effects

 approach to handling logit models with subject-specific

 terms uses conditional ML to eliminate the nuisance pa-

 rameters. For model (1), under the independent Bernoulli

 assumption, the sufficient statistic for ai, for a subject with
 data y equals >t Yit. The contribution to the conditional
 likelihood of that subject equals

 exp[Ei Et /5itYit]
 EDexp[Ei Et AO*tt

 where the index set D for the denominator refers to the set

 of all y* such that Et y* = Et Yit for all i. The conditional
 likelihood is the product of such terms for all subjects in the

 sample. It factors into a product of I terms, one for each

 variable. It follows that the conditional ML estimates of

 {/3it} are identical to those obtained using conditional ML
 separately with the data for each variable. From work of
 Tjur (1982), those estimates are identical to the regular ML
 estimates obtained from fitting the quasi-symmetry model

 to the cross-classification among conditions for each vari-
 able. Thus the conditional ML estimates are identical to the

 ordinary ML estimates of {/3it } obtained by fitting the mul-
 tivariate quasi-symmetry model (2). See Fischer (1989) for
 a discussion of conditional ML estimation for multivariate
 models of type (1).

 Given this result that the within-variable estimates from

 fitting the multivariate model are no different from those
 obtained by analyzing the variables separately, one might

 question the utility of the multivariate model. Though the
 full model is not needed to estimate {pit}, treating the I
 variables simultaneously in this way has certain advantages
 including

 a. providing fitted values for the complete cross-
 classification that satisfy marginally the model for
 each separate variable

 b. enabling tests of fit comparing these fitted values to
 the observed counts

 c. reflecting the dependence that exists between variables
 and permitting additional structure pertaining to their
 associations, such as the special case of model (2) for
 Table 1 that has equal membership-attitude odds ratios

 for each interview;
 d. allowing comparisons with simpler models, such as

 log-linear models resulting from degenerate or inde-
 pendent or perfectly correlated random effects or iden-
 tical fixed effects for different conditions or even dif-

 ferent variables in logit model (1).

 In particular, the multivariate quasi-symmetry model (2)

 provides joint fitted values that imply standard marginal

 analyses. Because the logit model (2) implies log-linear
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 model (3), severe lack of fit of the log-linear model casts

 strong doubt on the applicability of the logit model.

 An alternative approach worth pursuing with model (1)

 is fitting it using a parametric rather than a nonparametric

 structure for the random effects vector. It would be inter-

 esting to analyze whether results tend to agree for the non-

 parametric and parametric formulations, such as often hap-

 pens exactly in the matched-pairs case for a single variable
 (Neuhaus, Kalbfleisch, and Hauck 1994). A fully nonpara-

 metric approach provides so much freedom for the joint

 relationship that the fits for individual variables are no dif-

 ferent from those obtained by analyzing the data separately

 for each variable; this might not happen for a narrower re-

 striction on the joint distribution of the random effects, par-

 ticularly with further structure connecting the components

 in the random effect, such as equal correlations for all the

 pairs.

 Assuming additional parametric structure for the random-

 effects distribution raises other questions, of course. If the

 specification is correct, do the nonparametric estimates suf-

 fer a substantive efficiency loss? Because the nonparametric

 estimates are also conditional ML estimates, our intuition is

 that the answer is negative. If the specification is incorrect,

 could this introduce much bias? For a parametric marginal

 ML approach, it is important to check the degree to which

 the estimates depend on the choice of subject distribution,

 and to develop diagnostics that could help with that choice.

 Neuhaus, Hauck, and Kalbfleisch (1992) suggested that the
 bias is small, but previous work (e.g., Heckman and Singer
 1984) in a somewhat different context has shown that re-

 sults may depend strongly on the choice, and this is an

 advantage of the nonparametric approach (see also Aitkin
 1996). In particular, under the assumption that logit model
 (1) holds, log-linear model (2) is valid and provides con-
 sistent estimates of the condition effects regardless of the

 true distribution for the random effects. Thus one informal

 diagnostic for the parametric marginal ML approach would

 be to compare those estimates under various distributional

 assumptions to the nonparametric estimates; substantial de-
 viations from the nonparametric estimates provide evidence

 of a possibly inappropriate choice.
 Logit model (1) and the multicategory extensions pre-

 sented in this article describe how responses for each vari-

 able depend on the condition, possibly within levels of a

 group factor, but otherwise they contain no explanatory

 variables and have no provision for missing data. Other

 important problems for future work relate to extensions of

 such models for more complex data structures. In the single-
 variable case, for instance, Fischer (1974) and Hatzinger
 (1989) modeled the main-effect item parameters directly in
 terms of explanatory variables. Perhaps multivariate models

 such as those presented by Glonek and McCullagh (1995)
 could be extended to this repeated-measurement setting

 with random effects.
 One could also generalize to this multivariate form of

 data other analyses that differ from the traditional item-

 response form of analysis. For instance, Haberman and

 Gilula (1995) presented an information-theoretic approach

 that provides summaries of predictive power associated

 with various log-linear models. Finally, Ten Have and
 Becker (1995) have explored an alternative variety of log-
 linear models with quasi-symmetric structure.

 [Received November 1995. Revised June 1996.]
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