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 SUMMARY

 We consider two capture-recapture models that imply that the logit of the probability of capture is
 an additive function of an animal catchability parameter and a parameter reflecting the sampling
 effort. The models are special cases of the Rasch model, and satisfy the property of quasi-symmetry.
 One model is log-linear and the other is a latent class model. For the log-linear model, point and
 interval estimates of the population size are easily obtained using standard software, such as GLIM.

 1. Introduction

 An enormous literature exists on capture-recapture methods for estimating the population size of an

 animal population. Estimators have been proposed based on a wide variety of approaches, including

 a nonparametric formulation using a generalized jackknife (Burnham and Overton, 1978), a hierar-

 chical Bayesian model (George and Robert, 1992), martingale estimating equations (Yip, 1991;

 Lloyd, 1992), a Poisson model that applies when the number of sampling occasions is large and the

 probability of capture at each is small (Chao, 1989), and log-linear models (Fienberg, 1972; Cor-

 mack, 1989). The Burnham-Overton and Chao estimators assume that the probability of capture for

 a given animal is the same for all samples. They are members of a class of models, denoted by Ml,
 in much of the literature, permitting heterogeneity only among animals. The other estimators assume

 that the probability of capture at a given sample is the same for all animals. They are members of

 a class of models, denoted by Mt, permitting time effects only.
 This note considers a simple form of a model in the class denoted by Mth, allowing time effects

 and heterogeneity among animals. There is relatively little literature for this case, recent papers by

 Chao, Lee, and Jeng (1992) on a nonparametric approach and Lloyd and Yip (1991) using martin-

 gales being exceptions. The models we consider imply that the logit of the probability of capture is

 an additive function of an animal catchability parameter and a parameter reflecting the sampling

 effort at that occasion. Two special cases, a log-linear model and a latent class model, imply
 quasi-symmetry for a contingency table displaying the data. We consider closed populations,

 assuming no immigration, births, or deaths during the period of sampling.

 2. Quasi-Symmetric Log-linear Modeling

 Let pi denote the probability that animal i is captured in the sample taken at occasion j (i = 1,
 N; 1, , t). The object is to estimate N. The model

 logit(pi) a i + 8j (1)

 Key ii'oJds: Item-response models; Latent class models; Log-linear model; Quasi-symmetry;
 Rasch model.
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 Simple Capture-Recapture Models 495

 assumes a lack of interaction between animal catchability and the sampling occasion. This model

 form has "subject-specific" probabilities. It is commonly used in item-response modeling, where it

 is called the Rasch model (Rasch, 1961). In fitting it, one assumes that successive responses are

 independent, given the parameters. We consider two capture-recapture models that satisfy this

 structure. This section discusses a log-linear model, and Section 4 discusses a latent class model.

 Let n(il, .. ., it) denote the frequency of outcome id on occasion j (j = 1 , . . ., t), where i1 = 0
 denotes "not captured" and i1 1 denotes "captured." These are cell counts in a 2t contingency
 table. We treat these counts as realizations of independent Poisson variates, with expected values

 {rn(il, it)}. Note that N is the sum of the 2t cell counts, but n(0, ... , 0) is unobserved. It is easily
 shown (e.g., Duncan, 1985; Darroch and McCloud, 1986) by averaging over the animal population

 that model (1) implies that the expected frequencies satisfy

 log In(i I, ..., it) = p. + 3 1(iI = 1) + A- + I3,I(it = 1) + A(ij, . it), (2)

 where A(il, ..., it) is invariant to permutations of the argument. It is convenient to use parameter
 codings for which A(O, . 0. ,O) (and any lower-order relatives, in simpler models) equal zero, so that

 ,t simply represents log m(0, ...,O). One can then use the standard error of pi to get a confidence
 interval for log mui(0, ...0,O) and hence n(0, ... ? 0) and N. Such coding is the default in GLIM, for
 instance.

 Model (2) is the log-linear model of quasi-symmetry. Tjur (1982) showed that maximum likelihood

 (ML) estimates of {f,3} in (2) are conditional ML estimates of {f,3} in (1), given values of sufficient
 statistics for {ai}. Thus, when assumptions underlying model (1) hold, log-linear models for capture-
 recapture satisfy the property of quasi-symmetry. In particular, that property implies that the binary

 response (not captured, captured) has the same association for each pair of occasions. Log-linear

 models for capture-recapture have been used that permit associations and/or higher-order interac-
 tions among captures at various occasions (e.g., Cormack, 1989). The quasi-symmetric form of

 log-linear model does not seem to have been explicitly considered for this application, though

 Cormack (1993) used a special case of (2) with identical two-factor terms.

 Unfortunately, we cannot use the fit of the full model (2) to estimate 111(0, ..., 0) and hence N.
 This is because there is a separate likelihood equation

 In (O. ? * * *. ? ) = sI (O. ? ) (3)

 for that cell, so any count for it can be consistent with the model. However, one can test the

 adequacy of the quasi-symmetry model fitted to the 2t - 1 observed cell counts. If it fits well, one
 can then consider simpler, special cases of it that do not require (3). For instance, one can fit models
 without the highest-order interaction term, thus being "unsaturated on the main diagonal." When

 a reduced model fits well, one can estimate the unobserved count by the fitted value (0, ...( , 0)
 for it.

 3. Rabbits Redux

 Cormack (1985, 1989) reported a capture-recapture study having t = 6 consecutive trapping days for

 a population of snowshoe hares. Table 1 displays the data. Table 2 lists several models and

 summarizes their fits and population size estimates. The quasi-symmetry model (2) fits the 63

 observed cell counts well. The likelihood-ratio goodness-of-fit statistic equals G2 = 47. 1, based on
 52 degrees of freedom (df). The data are sparse, but cellwise inspection reveals no seriously large

 residuals. We fitted the special case of (2) having identical two-factor associations, but no higher-
 order interactions. This model has form

 log in(i, I , i6) =. + f311(i= 1) + + 61(i6 = 1) + (2')A, (4)

 where we use coding such that the association term A for each pair of occasions enters when the
 indices for both occasions are at the second level (i.e., i1 1), and where (a) = 0 when a < b. This
 model also fits well, having G2 50.7 with df = 55. The model has only one more parameter (A) than
 the mutual independence model, which fits more poorly (G2 =58.3, df =56). The latter model
 corresponds to al a *=ON in (1), or animal homogeneity. More complex log-linear models do not
 provide significantly better fits.

 The simple two-factor quasi-symmetry model (4) has ,h(O, ... , 0) =22.5. Its logarithm has an
 estimated standard error of .474, which leads to a 95%o confidence interval for ,ii(O, ... ? 0) of (8.9,
 56.9). Since the total of the observed counts is 68, we have J [ 90.5, and a confidence interval for
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 Table 1
 Results of capture-recapture of snowshoe har-es

 Capture 3, Capture 2, Capture 1

 Capture 6 Capture 5 Capture 4 0 0 0 0 01 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

 0 0 0 3 6 0 5 1 0 0

 (22.5)a (2.3) (5.4) (.9) (3.2) (.5) (1.2) (.3)
 (9.1)b (2.1) (4.8) (1.1) (2.8) (.6) (1.5) (.3)

 0 0 1 3 2 3 0 0 1 0 0

 (4.8) (.8) (1 .8) (.5) (1I. 1) (.3) (.6) (.2)
 (4.2) (1.0) (2.2) (.5) ( 1.3) (.3) (.7) (.2)

 0 1 0 4 2 3 1 0 1 0 0
 (3.9) (.6) (1.5) (.4) (.9) (.2) (.5) (.2)

 (3.5.) (.8) (1 .8) (.4) (I1. 1) (.2) (.6) (. 1)
 0 1 1 1 0 0 0 0 0 0 0

 (1.3) (.3) (.8) (.3) (.5) (.2) (.4) (.3)
 (1 .6) (.4) (.8) (.2) (.5) (.1) (.3) (.1)

 1 0 0 4 1 1 1 2 0 2 0
 (6.8) (1. 1) (2.6) (.6) (1.5) (.4) (.9) (.3)
 (6.0) (1 .3) (3. 1) (.7) (1 .9) (.4) (1 .0) (.2)

 1 0 1 4 0 3 0 1 0 2 0
 (2.3) (.6) (1.3) (.5) (.8) (.3) (.7) (.4)

 (2.8) (.6) (1.5) (.3) (.9) (.2) (.5) (.2)
 1 1 0 2 0 1 0 1 0 1 0

 (1 .9) (.5) (1I. 1) (.4) (.6) (.3) (.6) (.4)
 (2.3) (.5) (1.2) (.3) (.7) (.2) (.4) (. 1)

 1 1 1 1 1 1 0 0 0 1 2

 (I1.0) (.4) (. 9) (.5) (.5) (.3) (.7) (.7)
 (I. 1) (2) (.6) (.2) (.3) (.1) (.3) (2.0)

 a Simple quasi-symmetric log-linear model.
 b Quasi-symmetric latent class model.

 Table 2

 Likelihood-ratio goodness-of-fit statistics for models fitted to Table 1

 Structure of Likelihood-ratio Estimate
 Model capture prob. statistic df of N 95% CI

 Log-linear
 a. Symmetry Mh 58.0 57

 b. Mutual independence Mt 58.3 56 75.1 (70.0, 80.4)
 c. Two-factor quasi-symmetric Mth 50.7 55 90.5 (76.9, 124.9)
 d. Quasi-symmetry Mth 47.1 52

 e. No three-factor interaction Mt 32.4 41 104.8 (81.3, 169.6)

 Latent class

 f. Quasi-symmetric (L = 2) Mth 47.7 54 77.3 (73.1, 84.9)
 gI. Ordinary (L = 2) Mth 41.2 49 85.2 (76.2, 104.0)
 g2. Ordinary (L = 3) Mth 33.1 42 81.3 (72.0, 103.6)

 N of (76.9, 124.9). This is similar to the interval (74.8, 125.1) obtained for this model using a profile

 likelihood approach (Cormack, 1992), which is based on the values of n(0, ... , 0) for which the

 likelihood-ratio statistic for the model applied to the complete table increases by 3.84, the 95th

 percentile of a chi-squared distribution with 1 degree of freedom. Table 1 displays the fit of model

 (4). Likelihood equations for this and other log-linear models containing heterogeneous single-factor
 terms imply that the fitted totals of "captured" at the various occasions are identical to the observed

 counts.

 For such sparse data, quite different models can appear to fit adequately yet can provide highly

 diverse point and interval estimates of N. For instance, the mutual independence model gives

 m(,... ., 0) =7.1, N.= 75.1, and a confidence interval of (70.0, 80.4), whereas the no-three-factor
 interaction model gives ,h(0, .., 0) =36.8, N.= 104.8, and a confidence interval of (81.3, 169.6).
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 When different models appear to fit well, knowledge of the biological context may provide some
 guidance in choosing a model and estimate of N. As with other types of log-linear modeling, simpler

 models have advantages and disadvantages compared to more complex models. Unless the sample

 size is large, the smoothing that a well-fitting simple model provides can result in a better estimator,

 in terms of a criterion such as mean squared error. This is true even if the simple model does not

 truly hold, as we expect in practice. Simpler models also have smaller standard errors associated

 with parameter estimates. Simpler models have the potential for greater bias, however, and the

 smaller standard errors and the related narrower confidence intervals are deceiving. Particularly

 with small sample sizes, a model selection procedure may suggest a model that is much simpler than

 one that truly represents reality well, leading to confidence intervals for N that tend to be too

 narrow. Unless one has biological grounds for a choice of model, intervals based on the same data

 used for model selection tend to be overly optimistic (Regal and Hook, 1991). For Table 1, since

 quasi-symmetry model (4) fits better than the mutual independence model, we have little faith in the

 narrow confidence interval for N generated from the latter model.

 Table 3 shows how easy it is to fit the quasi-symmetry models using the GLIM package for

 generalized linear models. The default parameterization results in the estimate A = log th(0, ... , 0),
 thus giving immediate standard errors for this by displaying the estimates. The factor called "sym"

 takes different values for each (i, ..., it) having a different sum and hence a different set of
 permutations. Including this in the model gives the term A(i,, ... , it) for the full quasi-symmetry
 model. The special case of (2) with 81 = ... = 8t is the complete symmetry model. It corresponds
 to homogeneous occasion effects in (1). Comparison of the fits of the symmetry (G2 = 58.0) and
 quasi-symmetry (G2 47.1) models gives a statistic (based on df = t - 1 = 5) for testing the
 hypothesis of homogeneous occasion effects in (1), or marginal homogeneity in (2). Comparison of

 the fits of the mutual independence (G2 = 58.3) and quasi-symmetry models gives a statistic (based
 on df t - 2 = 4) for testing the hypothesis of homogeneous animal catchability in (1).

 Table 3
 GLIM code for fitting simple quasi-symmetric and other log-linear models to Table 1

 $units 64

 $data count $read Data from Table 1

 0 3 6 0 5 1 0 0 3 2 3 0 0 1 0 0

 4 2 3 1 0 1 0 0 1 0 0 0 0 0 0 0

 4 1 1 1 2 0 2 0 4 0 3 0 1 0 2 0

 2 0 1 0 1 0 1 0 1 1 1 0 0 0 1 2

 $calc a %gl(2,1): b = %gl(2,2): c = gl(2,4) d = %gl(2,8): e = %gl(2,16): f = %gl(2,32) $

 ! generates levels for 6 capture occasions

 $calc wt 1: sym = a + b + c + d + e + f - 5 $

 $ edit 1 wt 0 $ ! zero weight for unobserved cell

 $calc ab=(a-1)*(b-1): ac=(a-1)*(c-1): ad=(a-1)*(d-1): ae=(a-1)*(e-1): af=(a-1)*(f-1):
 bc=(b-l)*(c-1): bd=(b-1)*(d-1): be=(b-1)*(e-1): bf=(b-l)*(f-1): cd=(c-1)*(d-1): ce=(c-1)*(e-1):
 cf=(c-1 )*(f-1): de=(d-1 )*(e-1): df=(d- 1)*(f-1): ef=(e-1 )*(f-1) $ ! association terms

 $calc asso = ab+ac+ad+ae+af+bc+bd+be+bf+cd+ce+cf+de+df+ef $ ! common two-factor assoc.
 $wei wt

 $fac a 2 b 2 c 2 d 2 e 2 f 2 sym 7

 $yvar count $err pois

 $fit sym: +a + b + c +d + e + f $ ! Fits symmetry and quasi symmetry

 $fit - sym $ !Fits mutual independence model

 $fit + asso $ ! Fits simple quasi-symmetry model

 $dis e r $ ! Displays estimates and fitted values with residuals

 $fit +ab+ac+ad+ae+af+bc+bd+be+bf+cd+ce+cf+de+df+ef $ ! No-3-factor interaction
 $end

 4. Latent Class Models

 An alternative approach to estimating population size assumes that animals cluster into L latent

 classes, such that animals in the same class have the same catchability. For instance, for L =2, we
 might treat the animal population as a mixture of two types, one that shows an aversion to trapping

 and one that shows an attraction. Within latent classes, one assumes that the t responses by a given

 animal are independent. Latent class models correspond to the log-linear model for the joint

 classification of the occasions with the latent variable, such that responses are conditionally
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 independent given the latent class (Goodman, 1974). As with the approach in Section 2, heteroge-

 neity among animals results in {tn(ij, ..., i)} displaying associations. One can use a well-fitting
 latent class model to obtain an estimate of m(0, ..., 0) and hence N.

 The Rasch model (1) is an example of a latent class model having potentially as many latent

 classes as there are animals. One could instead consider a special case of that model in which there

 are only L distinct values of ai, with animals in the same latent class sharing the same catchability
 parameter. Lindsay, Clogg, and Grego (1991) discussed Rasch mixture models of this sort. Such

 models are a special case of ordinary latent class models that have identical associations between the

 latent variable and the capture status at each occasionj. Having structure (1), they are in class Mth
 and also satisfy quasi-symmetry.

 Agresti and Lang (1993) discussed quasi-symmetiic latent class models. The EM algorithm they

 described can also be used to fit those models and ordinary latent class models when certain cell counts

 are missing or unobservable. Model parameter estimates determine a fitted value fil(0, . 0. , 0) satisfying

 the model, and hence lead to an alternative quasi-symmetric estimate of N. One can regard latent

 class models as Poisson log-linear models in which only certain marginal totals are observable; that

 is, the counts within latent classes are unobservable, but the marginal totals obtained by summing

 over those classes are observable. In the capture-recapture application, one of those marginal

 counts is also unobservable. Lang (1992) provided a formula for obtaining asymptotic standard

 errors of parameter estimates in Poisson log-linear models for which only certain marginal totals are

 observable. When one uses latent class models to fit capture-recapture data, one can use his formula

 together with the delta method to get a standard error estimate for the estimated unobservable cell

 count n(0, ..., 0). One can use that standard error, or profile likelihood methods, to construct a
 confidence interval for N.

 For Table 1, the ordinary latent class model with two classes fits quite well, having GC = 41.2 based

 on df = 49. This model yields th(0, ... , 0) = 17.2. Using Lang's (1992) approach, we obtain an estimated

 standard error of .378 for its logarithm. This leads to N = 85.2, and a 95% confidence interval for N of

 (76.2, 104.0). The simpler quasi-symmetric latent class model also fits relatively well, having G2 = 47.7

 based on df = 54. Table 1 also displays this fit. This model yields fiz(0 ..., 0) = 9.3, N = 77.3, and a
 confidence interval of (73.1, 84.9). This model shows potentially a strong association between the

 latent variable and capture status, with the common estimated log odds ratio equaling 3.8. However,

 the estimated standard error of that estimate equals 2.0, indicating that this fit may not be appre-

 ciably different from the mutual independence fit. This also suggests why the confidence interval is

 not very different from that obtained with the mutual independence model, both intervals being

 optimistically narrow.

 Profile likelihood-based confidence intervals for N tended to be slightly wider. For instance, the

 interval for the ordinary latent class model was (74.0, 106.4). Latent class models with L = 3 do not

 appear to give substantively better fits. The quasi-symmetric latent class model then has two

 additional parameters, one for the latent main effects and one for the common association between

 the latent variable and each capture status, and has the same df as the full quasi-symmetry model;

 this model and related ones having L D 3 are equivalent to the full model, and do not provide

 estimates of population size [see Lindsay et al. (1991) for related remarks].

 There are some hierarchical relationships among the models listed in Table 2. The mutual

 independence model (b) is the special case of the quasi-symmetric log-linear model (c) and the

 no-three-factor-interaction model (e) having null values for all higher-order associations, and it is the

 special case of the quasi-symmetric latent class model (f) having only one latent class. These simple
 quasi-symmetric models (c) and (f) are themselves special cases of the full quasi-symmetry model

 (d), as is the symmetry model (a). Finally, the quasi-symmetric latent class model (f) is a special case

 of the ordinary latent class model (g).

 An alternative latent variable approach would assume a continuous distribution for animal

 catchability. For instance, in model (1), one could treat the animal term as a random effect, and
 assume for it a normal distribution with mean zero and unknown standard deviation. One could then

 estimate the model parameters by maximizing a marginal likelihood resulting from integrating over
 the random effects distribution. One would estimate the probability that a randomly selected animal

 is not observed at all t sampling occasions by calculating an estimate of that probability for a given

 ct. and then integrating with respect to the estimated distribution of cat. This approach is more

 complex than the others we have presented, and we do not pursue it further. It is worth noting,

 though, that Tjur (1982) showed that a nonparametric random effects approach leads again to the

 quasi-symmetric form of model.
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 5. Comments

 Model (1) is a simple, appealing model that has found considerable favor for other sorts of

 applications, such as item-response modeling of binary test items (Rasch, 1961) and motivation for

 McNemar's test for comparing matched proportions (Cox, 1958). We have used it to motivate two

 relatively simple estimates of population size. Since this paper was accepted for publication, an

 article has appeared (Darroch et al., 1993) using quasi-symmetric log-linear models for an applica-

 tion of capture-recapture modeling to U.S. census population data. When additional covariate

 information is available for each animal, one can formulate logit models for capture probabilities that

 incorporate that information, rather than using animal-specific parameters (e.g., Alho, 1990; Hug-

 gins, 1989, 1991). Another version of an Mth model discussed recently assumes that pij, rather than
 the odds, has form aibj (Chao et al., 1992; Lloyd and Yip, 1991).

 Limitations of the specialized Rasch models result from their simplicity. The models we discussed

 will fit poorly if there is substantial animal-by-occasion interaction in catchability. Or, they may fit

 poorly if there is residual dependence between occasions, given the animal parameters. Either of

 these departures could be reflected, for instance, by associations between capture statuses that are
 greater for occasions closer together in time. The models assume an interchangeability of occasions

 in the association structure, which is unrealistic in many biological applications. This assumption is

 probably more likely to be realistic for settings in which the entire sampling process occurs over a

 short period of time, such as in the snowshoe hare example.

 Duncan (1985) suggested a way to weaken the strong requirement in the Rasch model of

 independence of responses, given the subject parameters. This uses a generalization of the model

 that adds to the subjects' joint distribution a common association term for occasions that are

 adjacent in time. A corresponding log-linear model is a generalization of the quasi-symmetry models

 (2) and (4) that adds a parameter having as coefficient the number of pairs of adjacent indices (ij, ij, ,)
 that equal 1. For capture-recapture applications, one could use the version of this model that has a

 common association for all adjacent occasions, and another common association for all other pairs
 of occasions.

 In summary, the scope of these specialized Rasch models is limited by their fairly simple

 structure. The ubiquity of useful applications of Rasch models, however, makes them worthy of

 note in the capture-recapture literature.
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 RESUME

 Nous consid6rons deux modeles de capture-recapture dans lesquels la fonction logit de la proba-
 bilite de capture est une fonction additive d'un param&tre de risque de capture et d'un param&tre
 refl&tant l'intensit6 d'6chantillonnage. Les mod&les sont des cas particuliers du module Rasch et
 satisfont la propriet6 de quasi-sym6trie. L'un des deux modeles est log-lin6aire, l'autre appartient a
 la classe des modeles a variables sous-jacentes. Des estimations ponctuelles et par intervalle de la
 taille de la population sont aisles ai obtenir pour le modele log-lin6aire en utilisant un logiciel
 standard tel que GLIM.
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