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June 1983

THE CONSULTANT’S FORUM

Testing Marginal Homogeneity for Ordinal Categorical Variables

Alan Agresti
Department of Statistics, University of Florida, Gainesville, Florida 32611, U.S.A.

SUMMARY

The standard chi square tests of marginal homogeneity take no account of possible category ordering.
We describe several strategies that make use of category order and which tend to yield more powerful
tests for certain common alternatives.

1. Introduction

Consider a two-way contingency table with naturally ordered row categories that are identical
to the column categories. Denote the unknown cell probabilities in the » X r table by {p;;}
and let {p;;} be the observed cell proportions based on a sample of size n. We will consider
methods of using the sample data to compare the marginal distributions { p;+} and { p+}.

Stuart (1955) proposed a test of marginal homogeneity, with Ho:pi+ = p1i:,i=1,...,r. He
used the test statistic Q = nd’V“ld, where d’ = (d1, . .., d.—1) with d; = p;r — p4; and where
V is the maximum likelihood estimate of the null covariance matrix of n'/?d. The elements of
V are Vi; = —(py; + py) for i # j and Vi = pi + p+: — 2pi. For random samples, the
asymptotic joint normality of d induces a null asymptotic chi square distribution for Q, with
r — 1 degrees of freedom (df). Very similar tests have been proposed by other authors.
Bhapkar (1966, 1979) gave a Wald-type statistic which is asymptotically equivalent to Stuart’s
test statistic since it has the same form but uses the estimated non-null covariance matrix
W of d. In Bhapkar’s statistic, w;; = —(pi; + pji) — (pi+ — p+i)(pi+ — p+j) for i + j, and
Wii = Pix + p+i — 2pii — (pi+ — p+i)”. See also Grizzle, Starmer and Koch (1969) and Koch ez
al. (1977) for more details of this approach. Ireland, Ku and Kullback (1969) used minimum
discrimination information estimation to find an iterative solution for expected cell frequencies
that satisfy marginal homogeneity and to obtain another x7_, statistic. Bishop, Fienberg and
Holland (1975, pp. 294-5) suggested a x7_; statistic based on obtaining maximum likelihood
estimates of expected frequencies that satisfy marginal homogeneity.

These chi square tests of marginal homogeneity are invariant to any like permutations of
the variable categories. If the variable categories are ordered, these tests ignore that infor-
mation. It is interesting to note, however, that many textbooks on contingency tables illustrate
the tests by using tables with ordered categories. These tests are consistent against all
alternatives, and it is not incorrect to apply them to tables with ordered categories. Neverthe-
less, the ordering of the categories is additional information which we can utilize to obtain
more powerful tests, at least for certain important alternatives to the null hypothesis. In this
paper we describe briefly several strategies that do utilize the ordering. Each method will be
illustrated with the vision data in Table 1. The Stuart test yields Q = 11.96 based on df = 3
for these data, corresponding to P = .0l.

Key words: Square contingency tables; Ordered categories; Matched pairs; Chi square statistics; Mann—
Whitney test; Wilcoxon test; Ridits; Ordinal models.
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Table 1
Unaided distance vision for women; from Stuart (1955)

Grade of left eye
Grade of right eye
Highest Second Third Lowest
Highest 1520 266 124 66
Second 234 1512 432 78
Third 117 362 1772 205
Lowest 36 82 179 492

2. Ordinal Strategies
2.1 Mann—Whitney Test

Probably in most comparisons of marginal distributions for ordered categorical variables, one
is interested in whether one marginal distribution is stochastically larger than the other. We
can adapt the Mann-Whitney test to focus on such alternatives.

Let X be selected at random from the marginal distribution {p:+}, and let Y be selected
independently at random from the marginal distribution { p.,}. Consider the measure

T=pr(Y>X)—pr(X>7)
= 2 Pi+P+j — ZVPi+P+j

J>i >
= zp+i}’i+ - Epi+‘Y+i,
where yir = Y a<iPa+, Y+i = Y a<iP+a and Yo+ = y+o = 0. When Y is stochastically larger than
X, 7> 0, and when X is stochastically larger than Y, v < 0. Marginal homogeneity implies
that r = 0.

The sample version, 7 =}, j~.:pi+p+j — Y,i>;Pi+P+j, is the difference between discrete analogs
of the Mann-Whitney statistics. Several alternative expressions can be given for 7 or 7, which
utilize the equivalent ways of comparing distributions through Mann-Whitney statistics,
Wilcoxon-type mean rank statistics, or mean ridit statistics. For example, let Ry(V) denote
the mean ridit for the distribution of ¥V when the distribution of U is the ‘identified
distribution’ for calculating the ridits (see Bross, 1958). Then

= Rx(Y) — Ry(X)
= 2{Ry(Y) — Ry(X)}
= 2{Rx(Y) — Rx(X)},
where

RX(X) = % 2 Pi+(Yi+ + ‘Yi—1,+)
= 5= Ry(Y).

Now 7 might not seem as relevant as the corresponding measure for a pair, (X;, Y;), selected
at random for the joint distribution. However, marginal homogeneity does not imply that
pr(Y: > X;) = pr(X; > Y;) for a matched pair. Also, the difference in probabilities, , (or,
equivalently, the difference in mean ridits) is a meaningful summary of the difference between
two stochastically ordered distributions, regardless of whether that dlfference is estimated
with matched samples or with independent samples.

The delta method (see Goodman and Kruskal, 1972) can be applied to obtain a large-
sample normal distribution for 7 when the samples that comprise the marginal distributions

This content downloaded from 159.178.22.27 on Thu, 15 Jan 2015 15:11:20 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

Marginal Homogeneity for Ordinal Variables 507

are matched. Assume that the proportions { p;;} result from full multinomial sampling, and
let ¢ij = Yjr + Yj—1,+ — Y+i — Y+.i—1, where {¥i+ } and {¥.:} are the sample marginal distribution
functions. It follows that

(F = 1)/6: > N(O, 1),

2
62f = {2¢lszlj - (Z ¢i1pij) }/n.
LJ LJ

For large n, therefore, the null hypothesis of marginal homogeneity may be tested by means
of the statistic z; = 7/0;, which has an approximately standard normal null distribution. For
the vision data (Table 1), we obtain 7 = .0169, 6; = .0046 and z, = 3.65.

We would expect this test to be more powerful than the chi square tests when the marginal
distributions are stochastically ordered. Unlike the chi square tests, however, this z test is not
consistent for the class of all alternatives, but only for those with v # 0. For example, 7 = 0
for many tables whose marginal distributions differ in scale but not in location.

where

2.2 Model Parameters

For square contingency tables, McCullagh (1977, 1978) and Goodman (1979) have presented
models which contain parameters describing the degree of marginal inhomogeneity. For both
McCullagh’s logistic model and his palindromic symmetry model, the parameter is given by

A= 108(_2_ PN Z‘Pi'j'>,
Ui j'’>i V> )<t
which is assumed constant for i = 1, 2, ..., r — 1. For the palindromic symmetry model
applied to the vision data, the maximum likelihood estimate of the parameter is .167 with
standard error .046, leading to z; = 3.63 for testing marginal homogeneity, i.e. for testing that
the parameter equals zero. In an unpublished report (Institute of Statistics, University of
North Carolina, Mimeo Series No. 1323, 1980). K.A. Semenya and G. G. Koch (1980) gave
weighted least-squares solutions for two logistic models applied to these data, and obtained
results similar to those of McCullagh.

2.3 Weighted Sum of Differences

Consider the family of statistics of the form {M; = Y, wipir, My = Y, wip,;} for fixed
scores {w;}. A flexible approach to testing marginal homogeneity is to use M; — M; =
¥ wi( pir — p+i), with scores {w;} chosen according to the alternative one wishes to detect. For
four categories, we might choose, for example, the scores {3, 1, —1, —3} to detect differences
in location and {1, —1, —1, 1} to detect differences in dispersion. The estimated variance of
M 1= M. 2 is

Gt = % {Z (Wi — w))’pij — (Mr = Mz)z} )
LJ

and for large n, z3 = (M1 — M3)/6u,-m, has approximately the standard normal distribution
under H,. For the vision data with the scores {3, 1, —1, =3}, we find M; — M, = .0599,
om,-m, = .0173 and z5 = 3.46. Koch and Reinfurt (1971), Fleiss and Everitt (1971), and
Bhapkar (1970) have also mentioned versions of this statistic which is consistent for those
alternatives with Y, wipir ¥ Y, wip+:. Weighted sums of differences can also be constructed on
an alternative scale, such as a logit scale, through

r—1

'21 wi[log{?i+/(l = ¥i)} — log{fn/(l = ¥+)}.

=
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3. Power Comparisons

The efficiency of the approaches we have discussed, relative to Stuart’s chi square test,
depends on {p;;}. To illustrate the higher power that an ordinal procedure can have, we
made some power comparisons between a z test of the Mann—Whitney type and the version
of Stuart’s chi square test in which the non-null covariance matrix, W, of d is used. We
assumed random sampling from an underlying bivariate normal distribution having correla-
tion p, for 16 different cases. These cases represent all combinations of » = 3 and r = 6,
p=.2and p =.8, n =200 and n = 400, and two shifts A that denote where r — 1 category
boundaries of Y are placed relative to those of X. For r = 6, the boundaries for the X
categories are at ux, ux * 0.60x and ux + 1.20x, and the boundaries for the Y categories are
at uy + 130y, uy + 0.70y, py + O.loy, py — 0.50y and py — l.loy for A = .1, and at py +
l4oy, py + 0.80y, py + 0.20v, py — 0.40y and puy — 1.00y for A = .2. These categorizations
yield the marginal distribution of X, (.1151, .1592, .2257, .2257, .1592, .1151), and the marginal
distribution of Y, (.0968, .1452, .2182, .2313, .1728, .1357) for A = .1 and (.0808, .1311, .2088,
2347, .1859, .1587) for A = .2. The tables with » = 3 are obtained by combmlng the first two,
middle two, and last two categories of X and of Y from the case with r = 6. *

Table 2 shows the approximate probabilities of rejecting the null hypothe51s of marginal
homogeneity for six a-levels. The values for the Mann-Whitney z test afq given by
2 — ®(z3o — 7/0;) — B(z;4 + 7/0;). For the chi square test the values are the probabilities that
X711 random variables with noncentrality parameters A = nd’W '8 (where 8; = pis — p+:)
exceed the 100(1 — «) percentage point of a x7—; random variable. From Table 2 we make
the following observations:

(i) The power for the chi square test is uniformly smaller than that for the z test for

all combinations of a, A, p, n and r which we have considered.

(ii) The power for both tests is substantially greater at p = .8 than at p = .2 for fixed
a, A, n and r. Of course, the power for both tests is also greater for larger values
of a, A and n.

(iii) The power for the z test is uniformly greater at » = 6 than at r = 3, for fixed a,
A, p and n.

(iv) The ratio (1 — power for chi square test)/(1 — power for z test) is
(a) uniformly greater at A = .2 than at A = .1, for fixed a, p, n, r,
(b) uniformly greater at p = .8 than at p = .2, for fixed a, A, n, r,
(c) uniformly greater at n = 400 than at n = 200, for fixed a, A, p, 7,
(d) uniformly greater at r = 6 than at r = 3, for fixed «, A, p, n

Observation (iv) suggests that the use of the ordinal approach becomes relatively more
advantageous as A, p, n and r increase. These tendencies make intuitive sense, since as A, p
and n increase, the sample marginal distributions are more likely to be stochastically ordered,
thus reflecting the type of deviation from H, that the Mann—-Whitney test naturally detects.
We would also expect an ordinal approach to tend to be relatively more efficient the larger
the number of categories. When r = 2 there is no advantage to be gained from knowing the
category order. As r increases, the data become ‘more continuous’ and a test which ignores
quantitative information becomes more disadvantageous. As a further illustration of these
tendencies, it is interesting to note that the probability that the z test yields a smaller P-value
than does the chi square test is about .69 when A = .1, p = .2, n = 200 and r = 3, and about
94whenA=.2,p=.8n=400andr=6

The sample sizes reported in Table 2 were chosen to be large so that the asymptotic chi
square and normal distributions used would closely approximate the true sampling distribu-
tions. Hence, the nominal a-levels used in Table 2 should also be close to the actual levels.
We also performed Monte Carlo simulations of 10 000 tables for each of the 16 cases as a
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Powers of z test and X’ test for r X r table representing sample of size n from underlying normal

distribution with correlation p and marginal shift A

a-level
A o n r Test
20 .10 .05 .02 01 .001
.1 2 200 3 z 394 258 .166 .090 .056 011
x? 347 213 .130 .066 039 .007
6 z 422 283 185 .103 065 013
X’ 315 .184 .107 051 .029 .004
400 3 z 547 400 285 175 118 .029
x? 475 326 219 125 .081 017
6 z 588 443 323 204 .141 .037
x? 425 276 .176 .095 059 011
8 200 3 z 621 476 354 229 .161 044
x? .544 392 275 .166 112 027
6 z 745 616 492 349 262 .088
xZ 564 407 286 174 118 .029
400 3 z 831 724 610 466 368 .147
xZ 761 630 .506 .363 275 .097
6 z 928 .864 783 661 .566 292
x’ .800 677 .555 410 318 121
2 2 200 3 z 754 627 .503 .360 272 .093
x? 675 .530 403 270 .195 .059
6 z .801 685 .566 421 326 122
x2 616 461 335 213 .148 .040
400 3 z 934 .873 795 677 .582 .306
xZ 888 .801 701 .566 468 218
6 z 958 913 852 752 667 .388
x? .853 748 636 494 397 .170
8 200 3 z 969 934 .883 795 17 414
x? 943 .887 815 703 614 341
6 z .995 986 971 936 .898 a11
x> 969 933 .882 796 721 460
400 3 z .999 998 994 983 970 .878
x’ 998 .993 985 965 942 .809
6 z 1.000 1.000  1.000 999 998 984
x? 1.000 1999 .997 991 984 928

check on how similar the powers reported in Table 2 would be when, as in practice, estimated
standard errors are used in the z statistic and when estimated covariance matrices are used in
the chi square statistic. Nearly all the observed powers obtained from the Monte-Carlo
simulations fell within .01 of the theoretical ones given in Table 2, and all fell within .03.
Two added advantages of the ordinal approach should be mentioned. First, each statistic
can be modified in an obvious manner to yield a useful descriptive measure of the degree of
marginal inhomogeneity. Secondly, the ordinal approach may (unlike Stuart’s Q) be used to
obtain one-sided P-values.
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RESUME

Les tests du x* de ’'homogénéité marginale standards ne prennent pas en compte 'ordre sur les classes.
Nous décrivons plusieurs stratégies qui tiennent compte de cette contrainte d’ordre et qui permettent de
produire des tests plus puissants pour certaines alternatives souvent rencontrées.
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