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BIOMETRICS 39, 505-510 
June 1983 

THE CONSULTANT'S FORUM 

Testing Marginal Homogeneity for Ordinal Categorical Variables 

Alan Agresti 
Department of Statistics, University of Florida, Gainesville, Florida 32611, U.S.A. 

SUMMARY 

The standard chi square tests of marginal homogeneity take no account of possible category ordering. 
We describe several strategies that make use of category order and which tend to yield more powerful 
tests for certain common alternatives. 

1. Introduction 

Consider a two-way contingency table with naturally ordered row categories that are identical 
to the column categories. Denote the unknown cell probabilities in the r X r table by {pij} 
and let {pij} be the observed cell proportions based on a sample of size n. We will consider 
methods of using the sample data to compare the marginal distributions { pi+ } and { p+i}. 

Stuart (1955) proposed a test of marginal homogeneity, with Ho: pi+ = p+i, i = 1, . .. , r. He 
used the test statistic Q = nd'V `d, where d' = (di, . . ., dr-i) with di = pi+- p+i and where 
V is the maximum likelihood estimate of the null covariance matrix of n112d. The elements of 
V are Vij = -(pij + pji) for i + j and Vii = i+ + p+i - 2pi-. For random samples, the 
asymptotic joint normality of d induces a null asymptotic chi square distribution for Q, with 
r - 1 degrees of freedom (df). Very similar tests have been proposed by other authors. 
Bhapkar (1966, 1979) gave a Wald-type statistic which is asymptotically equivalent to Stuart's 
test statistic since it has the same form but uses the estimated non-null covariance matrix 
W of d. In Bhapkar's statistic, wij = -(pij + pji) - (pi+ - p+i)(pj+ - p+j) for i + j, and 
wii= pi+ + p+i - 2pii- (pi+ - p+i)2. See also Grizzle, Starmer and Koch (1969) and Koch et 
al. (1977) for more details of this approach. Ireland, Ku and Kullback (1969) used minimum 
discrimination information estimation to find an iterative solution for expected cell frequencies 
that satisfy marginal homogeneity and to obtain another X2-i statistic. Bishop, Fienberg and 
Holland (1975, pp. 294-5) suggested a X2-i statistic based on obtaining maximum likelihood 
estimates of expected frequencies that satisfy marginal homogeneity. 

These chi square tests of marginal homogeneity are invariant to any like permutations of 
the variable categories. If the variable categories are ordered, these tests ignore that infor- 
mation. It is interesting to note, however, that many textbooks on contingency tables illustrate 
the tests by using tables with ordered categories. These tests are consistent against all 
alternatives, and it is not incorrect to apply them to tables with ordered categories. Neverthe- 
less, the ordering of the categories is additional information which we can utilize to obtain 
more powerful tests, at least for certain important alternatives to the null hypothesis. In this 
paper we describe briefly several strategies that do utilize the ordering. Each method will be 
illustrated with the vision data in Table 1. The Stuart test yields Q = 11.96 based on df = 3 
for these data, corresponding to P = .01. 

Key words: Square contingency tables; Ordered categories; Matched pairs; Chi square statistics; Mann- 
Whitney test; Wilcoxon test; Ridits; Ordinal models. 
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Table 1 
Unaided distance vision for women;from Stuart (1955) 

Grade of left eye 
Grade of right eye 

Highest Second Third Lowest 
Highest 1520 266 124 66 
Second 234 1512 432 78 
Third 117 362 1772 205 
Lowest 36 82 179 492 

2. Ordinal Strategies 

2.1 Mann-Whitney Test 

Probably in most comparisons of marginal distributions for ordered categorical variables, one 
is interested in whether one marginal distribution is stochastically larger than the other. We 
can adapt the Mann-Whitney test to focus on such alternatives. 

Let X be selected at random from the marginal distribution { pi+ }, and let Y be selected 
independently at random from the marginal distribution { p+j}. Consider the measure 

T= pr(Y > X) - pr(X > Y) 

= pi+p+j - E pi+p+j 
j>i i>j 

= p+ii+- Epi+Y+i, 

where -yi+ = XaviPa+, Y+i = Easip+a and yo+ = y+o = 0. When Y is stochastically larger than 
X, T > 0, and when X is stochastically larger than Y, T < 0. Marginal homogeneity implies 
that T = 0. 

The sample version, T = Ej-ipi+p+j -i>jpi+p+j, is the difference between discrete analogs 
of the Mann-Whitney statistics. Several alternative expressions can be given for - or T, which 
utilize the equivalent ways of comparing distributions through Mann-Whitney statistics, 
Wilcoxon-type mean rank statistics, or mean ridit statistics. For example, let Ru(V) denote 
the mean ridit for the distribution of V when the distribution of U is the 'identified 
distribution' for calculating the ridits (see Bross, 1958). Then 

T = RX(Y) - Ry(X) 
= 2{Ry(Y) -.Ry(X)} 

= 2{Rx(Y) - Rx(X)}, 

where 

Rx(X) = I E pi+(yi+ + yi-1,+) 

= .5 = Ry(Y). 

Now T might not seem as relevant as the corresponding measure for a pair, (Xi, Yi), selected 
at random for the joint distribution. However, marginal homogeneity does not imply that 
pr(Yi > Xi) = pr(Xi > Yi) for a matched pair. Also, the difference in probabilities, T, (or, 
equivalently, the difference in mean ridits) is a meaningful summary of the difference between 
two stochastically ordered distributions, regardless of whether that difference is estimated 
with matched samples or with independent samples. 

The delta method (see Goodman and Kruskal, 1972) can be applied to obtain a large- 
sample normal distribution for z when the samples that comprise the marginal distributions 
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are matched. Assume that the proportions {pi>) result from full multinomial sampling, and 
let pij = j'+ + '-i, +- -y+,i-1, where {A +} and {jA+i} are the sample marginal distribution 
functions. It follows that 

(T-T)/T -*N(0, 1), 

where 

(2] 
u2T= 1Z kijpij- (2 4ijPj) n. 

For large n, therefore, the null hypothesis of marginal homogeneity may be tested by means 
of the statistic z1 = T which has an approximately standard normal null distribution. For 
the vision data (Table 1), we obtain T = .0169, a& = .0046 and zi = 3.65. 

We would expect this test to be more powerful than the chi square tests when the marginal 
distributions are stochastically ordered. Unlike the chi square tests, however, this z test is not 
consistent for the class of all alternatives, but only for those with T + 0. For example, T = 0 
for many tables whose marginal distributions differ in scale but not in location. 

2.2 Model Parameters 

For square contingency tables, McCullagh (1977, 1978) and Goodman (1979) have presented 
models which contain parameters describing the degree of marginal inhomogeneity. For both 
McCullagh's logistic model and his palindromic symmetry model, the parameter is given by 

A=log( E XPOj E Pij 
i'-i j >i i'>1 j S-i 

which is assumed constant for i = 1, 2, ..., r - 1. For the palindromic symmetry model 
applied to the vision data, the maximum likelihood estimate of the parameter is .167 with 
standard error .046, leading to Z2 = 3.63 for testing marginal homogeneity, i.e. for testing that 
the parameter equals zero. In an unpublished report (Institute of Statistics, University of 
North Carolina, Mimeo Series No. 1323, 1980). K.A. Semenya and G. G. Koch (1980) gave 
weighted least-squares solutions for two logistic models applied to these data, and obtained 
results similar to those of McCullagh. 

2.3 Weighted Sum of Differences 

Consider the family of statistics of the form {M1 = i Wipj+, M2 = i Wip+j} for fixed 
scores {w1}. A flexible approach to testing marginal homogeneity is to use M1 - M2 = 
E wi(pi+ - p+i), with scores {wi} chosen according to the alternative one wishes to detect. For 
four categories, we might choose, for example, the scores {3, 1, -1, -3) to detect differences 
in location and { 1, -1, -1, 1} to detect differences in dispersion. The estimated variance of 
M1- M2is 

MI-M2= -{ (Wi - Wj) pij - (M1- M2)- 

and for large n, Z3 = (M1 - M2)/AM1M2 has approximately the standard normal distribution 
under Ho. For the vision data with the scores {3, 1, -1, -3}, we find M1 - M2 = .0599, 
aM1M2 = .0173 and Z3 = 3.46. Koch and Reinfurt (1971), Fleiss and Everitt (1971), and 
Bhapkar (1970) have also mentioned versions of this statistic which is consistent for those 
alternatives with Y wipi+ + Y wip+i. Weighted sums of differences can also be constructed on 
an alternative scale, such as a logit scale, through 

r-1 

E wi log{-i+ /(l - yi~+)} -log{-j%1/(l 1-y}] 
i=l 

This content downloaded from 159.178.22.27 on Thu, 15 Jan 2015 15:11:20 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


508 Biometrics, June 1983 

3. Power Comparisons 

The efficiency of the approaches we have discussed, relative to Stuart's chi square test, 
depends on { pi>}. To illustrate the higher power that an ordinal procedure can have, we 
made some power comparisons between a z test of the Mann-Whitney type and the version 
of Stuart's chi square test in which the non-null covariance matrix, W, of d is used. We 
assumed random sampling from an underlying bivariate normal distribution having correla- 
tion p, for 16 different cases. These cases represent all combinations of r = 3 and r = 6, 
p = .2 and p = .8, n = 200 and n = 400, and two shifts A that denote where r - 1 category 
boundaries of Y are placed relative to those of X. For r = 6, the boundaries for the X 
categories are at [tx, [tx ? 0.6ax and [tx ? 1.2ax, and the boundaries for the Y categories are 
at [ty + 1.3ay, [ty + 0.7ay, [y + O.lay, ty - 0.5ay and [ty - l.lla for A = .1, and at [ty + 
1.4ay, tty + 0.8ay, [ty + 0.2ay, [ty - 0.4uy and [ty - 1.0ay for A = .2. These categorizations 
yield the marginal distribution of X, (.1151, .1592, .2257, .2257, .1592, .1151), and the marginal 
distribution of Y, (.0968, .1452, .2182, .2313, .1728, .1357) for A = .1 and (.0808, .1311, .2088, 
.2347, .1859, .1587) for A = .2. The tables with r = 3 are obtained by combining the first two, 
middle two, and last two categories of X and of Y from the case with r = 6. 

Table 2 shows the approximate probabilities of rejecting the null hypothesis of marginal 
homogeneity for six a-levels. The values for the Mann-Whitney z test ate given by 
2 - O(za - /G)- 4I(Zia + T/Ga). For the chi square test the values are the probabilities that 
X2- ,A random variables with noncentrality parameters X = nO'W-10 (where Si = P+- p+i) 
exceed the 100(1 - a) percentage point of a X2-1 random variable. From Table 2 we make 
the following observations: 

(i) The power for the chi square test is uniformly smaller than that for the z test for 
all combinations of a, A, p, n and r which we have considered. 

(ii) The power for both tests is substantially greater at p = .8 than at p = .2 for fixed 
a, A, n and r. Of course, the power for both tests is also greater for larger values 
of a, A and n. 

(iii) The power for the z test is uniformly greater at r = 6 than at r = 3, for fixed a, 
A, p and n. 

(iv) The ratio (1 - power for chi square test)/(I - power for z test) is 
(a) uniformly greater at A = .2 than at A = .1, for fixed a, p, n, r, 
(b) uniformly greater at p = .8 than at p = .2, for fixed a, A, n, r, 
(c) uniformly greater at n = 400 than at n = 200, for fixed a, A, p, r, 
(d) uniformly greater at r = 6 than at r = 3, for fixed a, A, p, n. 

Observation (iv) suggests that the use of the ordinal approach becomes relatively more 
advantageous as A, p, n and r increase. These tendencies make intuitive sense, since as A, p 
and n increase, the sample marginal distributions are more likely to be stochastically ordered, 
thus reflecting the type of deviation from Ho that the Mann-Whitney test naturally detects. 
We would also expect an ordinal approach to tend to be relatively more efficient the larger 
the number of categories. When r = 2 there is no advantage to be gained from knowing the 
category order. As r increases, the data become 'more continuous' and a test which ignores 
quantitative information becomes more disadvantageous. As a further illustration of these 
tendencies, it is interesting to note that the probability that the z test yields a smaller P-value 
than does the chi square test is about .69 when A = .1, p = .2, n = 200 and r = 3, and about 
.94 when A = .2, p = .8, n = 400 and r = 6. 

The sample sizes reported in Table 2 were chosen to be large so that the asymptotic chi 
square and normal distributions used would closely approximate the true sampling distribu- 
tions. Hence, the nominal a-levels used in Table 2 should also be close to the actual levels. 
We also performed Monte Carlo simulations of 10 000 tables for each of the 16 cases as a 
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Table 2 
Powers of z test and X2 test for r X r table representing sample of size nfrom underlying normal 

distribution with correlation p and marginal shift A 

a-level 
A p n r Test 

.20 .10 .05 .02 .01 .001 
.1 .2 200 3 z .394 .258 .166 .090 .056 .011 

X2 .347 .213 .130 .066 .039 .007 
6 z .422 .283 .185 .103 .065 .013 

X2 .315 .184 .107 .051 .029 .004 
400 3 z .547 .400 .285 .175 .118 .029 

X2 .475 .326 .219 .125 .081 .017 
6 z .588 .443 .323 .204 .141 .037 

X2 .425 .276 .176 .095 .059 .011 

.8 200 3 z .621 .476 .354 .229 .161 .044 
X2 .544 .392 .275 .166 .112 .027 

6 z .745 .616 .492 .349 .262 .088 
X2 .564 .407 .286 .174 .118 .029 

400 3 z .831 .724 .610 .466 .368 .147 
X2 .761 .630 .506 .363 .275 .097 

6 z .928 .864 .783 .661 .566 .292 
X2 .800 .677 .555 .410 .318 .121 

.2 .2 200 3 z .754 .627 .503 .360 .272 .093 
X2 .675 .530 .403 .270 .195 .059 

6 z .801 .685 .566 .421 .326 .122 
X2 .616 .461 .335 .213 .148 .040 

400 3 z .934 .873 .795 .677 .582 .306 
X2 .888 .801 .701 .566 .468 .218 

6 z .958 .913 .852 .752 .667 .388 
X2 .853 .748 .636 .494 .397 .170 

.8 200 3 z .969 .934 .883 .795 .717 .414 
X2 .943 .887 .815 .703 .614 .341 

6 z .995 .986 .971 .936 .898 .711 
X2 .969 .933 .882 .796 .721 .460 

400 3 z .999 .998 .994 .983 .970 .878 
X2 .998 .993 .985 .965 .942 .809 

6 z 1.000 1.000 1.000 .999 .998 .984 
X2 ..000 999 997 .991 .984 .928 

check on how similar the powers reported in Table 2 would be when, as in practice, estimated 
standard errors are used in the z statistic and when estimated covariance matrices are used in 
the chi square statistic. Nearly all the observed powers obtained from the Monte-Carlo 
simulations fell within .01 of the theoretical ones given in Table 2, and all fell within .03. 

Two added advantages of the ordinal approach should be mentioned. First, each statistic 
can be modified in an obvious manner to yield a useful descriptive measure of the degree of 
marginal inhomogeneity. Secondly, the ordinal approach may (unlike Stuart's Q) be used to 
obtain one-sided P-values. 
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RESUME 

Les tests du x2 de 1'homogeneit6 marginale standards ne prennent pas en compte l'ordre sur les classes. 
Nous decrivons plusieurs strategies qui tiennent compte de cette contrainte d'ordre et qui permettent de 
produire des tests plus puissants pour certaines alternatives souvent rencontrees. 
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